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About the Cover

The upper left panel shows a GUES satellite visible image of Andrew in the
Gulf of Mexico near maximum intensity (936 mb). The upper right panel shows
the comparisons of hindcast (dashed) and measured (solid line) time series of
significant wave height (upper graph) and spectral peak period (lower graph)
at LATEX Station 16, located irn 19 meters water depth at 28 degrees 52.024
minutes North latitude, 90 degrees 29.572 West longitude. The lower panel
shows the envelope of maximum hindcast significant wave height (contours at 1
meter intervals). The wave hindcast was made with Oceanweather's third-

generation spectral wave model.
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Abstract

The evolution of the surface wind field and ocean response in the northern
Gulf of Mexico in hurricane Andrew (1992) is described through the application
of advanced numerical wind, ocean surface wave and three-dimensional current
hindcagt models adapted to the basin at high spatial resolution (grid spacing
of 10 km}. The models adopted have been previocusly applied to model
historical Gulf of Mexico hurricanes; in this study, the models were carefully
validated against all available data acguired in Andrew.

The study included a substantial data assembly and processing component to
ensure that all public domain measurements from government, institutional and
offshore industry sources of surface wind, surface waves, storm surge and
currents were identified, acguired and made available in forms most useful for
model calibration and validation.

Surface wind fields were developed using an improved version of a numerical
model of the vortex planetary boundary layer model. The parameters of the
model relied heavily on the extensive suite of meteorclegical data acguired by
US Air Force and NOARA reconnaissance aircraft. Surface waves were modeled
using a third-generation model which included shallew water physics.

surface and sub-surface currents were modelled using a three-dimensiocnal
hydrodynamic model which resolves the vertical coordinate in 13 layers and
includes prognostic equations for temperature, salinity and turbulent energy
as well as surface height and velocity.

The study provides a data base not only of scilentific interest, but also of
use in engineering studies, such as analyses of post-mortem platform response
and failure, investigations of pipeline failure modes, and assessment of
various types of environmental loading on offshore structures. The modeling
capability demonstrated and validated through this study establishes an
analysis tool for reassessment of extreme environmental criteria especially
for water depths in which alternative existing criteria may conflict
{approximately the range 15-50 m).
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1. INTRODUCTION

Hurricane Andrew is the costliest natural disaster in United States
history. While much of the cost was incurred in South Florida, this study is
prompted in part by the striking impact of this storm in the Gulf of Mexico.
At least 36 major oil production platforms and 145 satellite wells were
damaged including 35 structures completely toppled (Daniels, 19%4). A
reported 454 pipeline segments were damaged resulting in an estimated total
gpill of oil of 2,500 barrels. There was no loss of life offshore.

The experience of Hurricane Andrew provides an opportunity to
quantitatively evaluate and gain better understanding of the structural
regponse of offshore platforms to envirommental loading. Such studies will be
severely hampered, however, without reliable data on environmental conditions
(sustained wind speed and peak gust, significant wave height, maximum wave
height, maximum wave crest heights, storm surge and storm driven ocean
currents) at each site affected. Unfortunately, there were few instrumental
measurements made offshore of surface winds, waves, currents or surge within
about 80 miles of the track of the center of Hurricane Andrew. The most
critical requirement is for data in shallow water inside depths of about 60
meters. The objective of this study is to provide a comprehensive and reliable
data base of environmental data in areas affected by Andrew, through the
application of hindcast models which have not only been previously calibrated
and validated against historical Gulf of Mexico hurricanes but which in this
study are validated and, if necessary, recalibrated against all available data

acguired in Andrew.

The study includes a substantial data assembly effort to ensure that all
public domain measurements of surface wind, surface waves, storm surge and
currents are identified and a data analysis effort to make those data sets
deemed of value to the model calibration and validation available to the

modelers in useable form.

The hindcasts were carried out basically by applying three numerical
models. The first is a model of the wind field in the planetary boundary
layer of a translating vortex embedded in a background flow (Cardone et al.,
1976). This model has been used successfully to model historical tropical
cyclones in prior studies (e.g. Forristall, Hamilton and Cardone, 1977)
and has been recently substantially updated to allow the modeling of more
complex storm wind field patterns (Thompson and Cardone, 1994). The second
model is a third-generation (3G) spectral ocean wave model adapted to the Gulf
of Mexico on a grid of 10 km spacing. Since the introduction of the 3-G WaAM
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model (WAMDI Group, 1988) 3-G type models have been adopted at several centers
(e.g. ECMWF, FNOC, NMC) for global wave analysis and forecasting. The 3-G
model applied here (Khandekar, Lalbeharry and Cardone, 1894) is Oceanweather's
adaptation of WAM, which was tuned and validated in part against wave
measurements in historical Gulf of Mexico hurricanes Camille (1969) and
Frederic (1979). The third model applied is a three-dimensional hydrodynamic
model (Keen and Slingerland, 1993a) which has also been previocusly applied to
Gulf of Mexico hurricanes. '

This report is organized as follows. Section 2 gives a general summary
of the data collection and analysis effort. A complete report on this phase
of the study is included as Appendix A. Section 3 describes the methodology
used to specify the time history of the surface wind field in Andrew on the
grid system used for the wave and hydrodynamic models and gives an overview of’
the wind field itself. The wave hindcast is described in Section 4 and the
current modeling results are given in Section 5. In each of the above
sections, comparisons between measured data and hindcasts are also given.
Hindeast results are also provided in computer readable form. Section &

contains the study summary and conclusions.



2. Data
2.1 Introduction

This section provides a summary of the data sources available during
Andrew in the northern Gulf of Mexico and the data acquired and processed for
this study. A complete data report is included as Appendix A, which includes
many plots of time histories of measured winds, sea states and currents at
various sites. The measured data files themselves for the 10-day window
encompassing Hurricane Andrew are included on the CD-ROM provided with this

report.

The hindcast analysis of Hurricane Andrew is dependent on the acquisition
and subsequent analysis of measured meteorological and oceanographic data in
basically two ways. First, the data are used to provide initial and/or
boundary conditions for the models themselves. For example, the meteorological
data are used to specify the storm track and the time history of the
parameters needed to drive the wind field model. The hydrographic data help
specify the initial distributions of temperature and salinity in the hindcast
area. Second, measured data are used to either validate the results of the
model or to fine tune parameters or physical mechanisms, usually those which
model the frictional stresses at the sea surface and along the bottom or the
turbulent structure of the water c¢olumn.

Several reports documenting Andrew's meteorological and oceanographic
conditions have been published using data readily available from coastal
measurement sites and/or transmitting buoys or oil platforms. These include
studies by Breaker et al. (1594), Stone et al. (1994) and DiMarco et al.
(1994) which have concentrated on the surface observations. The present study
concentrates primarily on the analysis of both the surface and subsurface
parameters. These parameters are used in the development of the extreme wind,
wave, storm tide and current velocity over the entire region affected by
Andrew through the use of the hindcast models. Selected data sets from the
earlier studies have been incorporated herein when they have provided useful

results for the above objective.

Due to the considerable marine activity in the Gulf of Mexico, various
government and industry data ceollection programs were in progress during
Andrew's trangit. The Minerals Management Service's LATEX Physical
Oceanographic program was by far the most extensive of these measurement
programs and has provided considerable data which can be used in the hindcast
analysis of the wind, wave, storm tide and current velocity as well as for the
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initial hydrographic conditions. Other data acquisition programs include the
National Data Buoy Center's (NDBC)} C-MAN measurements both on the coast and on
0il platforms, the National Ocean Service's coastal tide gauge installations,
the army Corps of Engineers' (WES/COE} coastal wave measurement program on oil
platforms, the National Hurricane Center's (NHC} and the Reserve Air Force's
reconnaissance aircraft flights, the il industry's measurements on selected
platforms, especially Shell's Bullwinkle structure. These measurement sites
are shown in Figure 2.1 which also shows Andrew's track.

2.2 Meteorological Data

Table 2.1 summarizes the locations, sensor elevations and averaging
intervals at the measurement sites described in the following sections. In
addition to these fixed sites, daily reconnaissance flights were made into
and around Hurricane Andrew as it crossed the Gulf of Mexico collecting
pressure, temperature and upper level wind data as well as eye shape and
diameter cbservations by Air Force and NOAA personnel. These data have heen
collated at the National Hurricane Center in Coral Gables and at the National
Hurricane Research Divisicn of the Atlantiec Meteorological and Oceanographic
Laboratory of NOAR, and were ocbtained on magnetic tape for this study (these
data are not contained on the CD). The use of the aircraft data is described

in more detail in Section 3.
2.2.1 NDBC Buoy, 0il Platforms and C-MAN

Wind velocity and barometric pressure data were observed at NDBC buoys,
oil production platforms, and C-MAN stations alcong the coast. Air and sea
temperature were also recorded at the buoys and C-~MAN locations. The location
of these measurement gites are given in Figure 2.1 and Table 2.1 Some
parameters are missing due to sensor failure and some records are truncated
due to system failure. A description of the NDBC buoys used in this study is
given in Gilhousen et. al. (1990). The data for Hurricane Andrew were

obtained from the National Oceanographic Data Center in Washington, D.C.

The C-MAN data are also acquired by NDBC and the instrumentation systems
are described in detail in Coastal-Marine Automated Network (C-MAN) Users

Guide (NDBC, 1992). C-MAN stations are generally located in relatively
shallow water near the coast located on alds-to-navigation structures or other
existing platforms. Instrumented oil platforms are usually privately
installed and maintained on existing platforms in deeper water than the C-MAN
stations, but much shallower water than the NDBC buoys.
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Meteorological and oceanographic data were also acquired during
Hurricane Andrew from two oil platforms which were part of a joint oil
industry and NDBC project called the Meteorolegical and Oceanographic
Measurement System (MOMS). Shell's Bullwinkle platform (40 nm southwest) and
Exxon's Lena platform (60 nm northeast} were the two c¢losest MOMS structures
to Andrew (see Figure 2.1). Only barometric pressure and wind speed were
reported at the Lena platform. Meteorological data was also reported for
Chevron's Garden Bank 236A platform, considerably west (125 nm) of the
hurricane track. The measurements are useful for peripheral values of wind
barometric pressure and wind speed which are used in the formulation of the
model hurricane wind field. These data were reported as part of the C-MAN
program in near real time during the hurricane. All platforms were just
beyond the edge of the continental shelf. Meteorological data were also
acquired at the Grand Isle C-MAN station as reported by Breaker et. al. {1994,
in progress). Locations are given in Table 2.1. The reported minimum
pressure and maximum wind speed and associated direction are given in Table
2.2. 1In this table all wind speeds are reduced to 10 m height using a 1/7th
power law.

2.2.2 MMS/LATEX

There were three LATEX meteorclogical buoy mooring sites (17, 19 and 53)
located in the path of Hurricane Andrew as shown in Figure 2.1. However, the
meteocrclogical buoy at mooring 53 and three others in the western Gulf were
removed to decrease the possibility of considerable mooring losses during the
hurricane seascn. The hurricane eye passed over mooring 53's normal location.
The hurricane passed very close to the met buoy at LATEX mooring 17 where both
wind velocity, barometric pressure and temperature data were recorded. The
anemometer on mooring 17, located 30 nm to the west of the track, was lost
prior to Andrew's arrival; however sea level pressure was recorded. At
mooring 19, located 55 nm to the west of the track, both wind wvelocity and
pressure were recorded. Storm peak data for moorings 17 and 19 are included in
Table 2.2.

2.2.3 Other Measurements

Maximum l-minute average and peak surface wind speeds were recorded at
Ship sShcal 198G, East Cameron 83H and 42B and South Marsh Island 136B
(Rappaport, 1992) and pressure and wind speed at Grand Isle Coast Guard
Station (Breaker et al., 1994). Time histories of these data were not
chtained. Maximum wind speeds are included in Table 2.2.



2.3 Hydrographic Data

The water mass distribution in that part of the Gulf where Andrew crossed
the continental was sampled in a LATEX hydrographic cruise several weeks
earlier. Both ADCP and CTD data had been acquired. The locations of the
hydrographic stations are shown in Figure 2.2. The potential temperature and
salinity data were acquired in both synoptic and time series measurements.

The effect of the hurricane was to mix the water column, thereby reducing the
surface potential temperature and increasing the salinity. At the bottom over
the shelf, the mixing proceas was reversed, although the change in these two
parameters was considerably less. At mooring 13, which was very close to the
hurricane track, inertial oscillations were set-up at both the middle (100 m)
and bottom (190 m) meter depths., These oscillations started a day after the
hurricane passed through the site and lasted for 5 to 6 days. These
ogcillations were not as developed in shallower water (47 m) at mooring 14 and

lasted only 1 to 2 days.

The synoptic hydrographic data, acquired about a week before Andrew's
transit were used to initialize the boundary conditions in the current
velocity medel. Figure 2.3, for example, indicates the crossg-shelf
temperature distribution. The time series measurements were used to verify
the temperature and salinity changes at discrete locations and depths.

2.4 Water Elevation

Storm water elevations over the continental shelf and along the coast are
used to agsist in the verification/calibration of the numerical-hydrodynamiec
current and storm tide model as well as in the computation of the hindecast
wave parameters in shallow water. The NOS gauges along the coast acquired
these data; however, offshore measurements are more suitable to the
verification of the model as applied to the continental shelf.

2.4.1 cCorps of Engineers

Three U. 8. Army Corps of Engineers' wave pressure gauges were installed
in water depths from 11.3 to 12.2 meters. These gauges sites and data status
are shown in Table 2.3. Only the Eugene Island 100 data were processed in this
project as the other gauges were either too far away or too much data was
missing. The pressure gauge records from Eugene Island 100 were analyzed to
determine the mean water elevation every three hours. BAs Hurricane Andrew
approached the measurement site, the gauge began to malfunction
intermittently, missing the more intense part of the hurricane which passed
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through the area at about 0600 GMT on August 26th. There is a 1l2-hour data
gap from 0220 GMT to 1420 GMT, thus the observations missed the peak water
elevation. Due the gaps in the record, the water elevations were not detided.
Note that the initial drop in storm water elevation below mean sea level is
most likely due to the offshore winds before the hurricane approached the site
plus the relatively shallow water depths.

2.4.2 NDBC Buoy and C-MAN

There are obviously no water elevations from the buoys. For the coastal
C-MAN and NOS stations, the water elevation records were analyzed by Breaker
et. al., (1994) and shown here as Figure 2.4. At Grand Isle the maximum storm
surge was 1.11 m above MLLW and the maximum water elevation was 1.16 m. These
were the largest measured values reported west of the Mississippi Delta.

2.4.3 MMS/LATEX

Water elevation data was available from the LATEX pressure gauge at
mooring 16 which was located near the hurricane track. Although the pressure
gauge tipped over during the hurricane, it was possible to account for this
depth change and to use the entire record. The location of mooring 16 is
shown in Figure 2.2. Note that other water level data was measured at LATEX
sites (20, 23 and 1) further west; however, these were tooc far away to provide

useful informaticon for the hurricane model calibration.

LATEX mooring 16 pressure gauge operated throughout the hurricane
including the periocd when the Minispec frame turned on its side. The change
in the water depth was easily determined by comparing the mean depth of the
gauge before the hurricane with the mean depth after the hurricane. Using a
period of record of 60 days, a harmonic analysis was performed on the measured
data to determine the tidal constituents. These constituents were then used
to determine the tidal heights relative to mean sea level for the 10-day
pericd centered on the storm. The tidal heights were then subtracted from the
measured water elevations to give the peak storm water elevation or storm tide
which was 68.5 cm. Time histories of the measured, tidal and detided water

levels are shown in Figure 2.5.
2.5 Wave Measurements
2.5.1 NDBC Buoy and C-MAN

The NDBC buoys 42001 and 42003 provided complete wave time series but
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were located on the weaker side of the hurricane (south of the hurricane
track) . Buoy 42001 was considerably south of the hurricane track (125 nm)
and the wave heights were dominated by the long period swell which arrived
before the hurricanes had generated the maximum local sea conditions. The
largest significant height was 4.4 m with a 10.9 sec spectral period. The
significant wave heights were computed from the wave spectra. Buoy 42003 was
considerably closer to the hurricane track (25 nm) and the maximum significant
wave height was 6.2 m with a spectral period of 9.0 sec. The wave direction
was from the east-northeast and rapidly shifted to the northwest as the

hurricane passed by.

Of the two C-MAN stations located on oil platforms, the Bullwinkle
location was relatively close to the hurricane track (45 nm southwest of the
track) and thus provided good wave measurements. At the Shell Bullwinkle
rlatform the wave heights increased to 7.9 m and wave period was 9.8 sec.

2.5.2 Corps of Engineers

Wave data were also recorded at the three instrumented platforms where
water levels were measured (Table 2.3). However, the only nearly complete
data set is at Eugene Island 100, which was located a few miles in the lee of
a relatively shallow shoal {3 to 4 m deep) to the east through socutheast,
thereby limiting the wave heights by the breaking wave criteria. The pressure
gauge provided intermittent data during the peak of Hurricane Andrew's transit
through this area; therefore, the maximum significant wave height of 3.0 m at

may not be the highest that occurred.
2.5.3 MMS/LATEX

Measured wave height data were cobtained from LATEX mooring 16 which was
about 20 nm northeast of the track at the closest point. A Coastal Leasing
Inc. MimiSpec PUV type gauge was installed at this location. The mean water
depth of the pressure gauge wag 17.63 m before the pressure gauge housing
turned over and 18.81 m thereafter, The pressure and current velocity data
were used to obtain the directional wave spectra until it was overturned by
Andrew. However, the pressure gauge continued to operate correctly thereafter
and the non-directional wave spectra could be obtained from these data.
Mooring 17, about 25 miles west of the hurricane track was not installed at

this time.

LATEX mooring 16 was potentially in the direct path of the largest waves
associated with Hurricane Andrew at the water depth of the site, since the
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station is located just beyond the radius of maximum wind speed. Subsequent
to the measurement of the waves in Hurricane Andrew, the MiniSpec was
determined to have a number of problems including electronic noise, signal
clipping, warm~up transients, and the lack of calibration for temperature
effects. These problems were addressed by LATEX personnel (Kelly et. al.,
1993) to reconstruct the wave measurements during Andrew as best possible.
The tide mode (averaged) data remains gquestionable. The pressure data during
Andrew has been corrected for these problems and verified by computing the
wave heights using independent means, using both the pressure spectrum and the
velocity spectrum. The overturning problem did not appear to present a
problem to the wave analysis, except that the wave heights could no longer be
constructed using the velocity spectrum after that event, just from the

Pressure spectrum.

The results of the wave data analysis are provided in Figure 2.6 for the
48-period encompassing the maximum wave height at mooring 16. These results
were produced by the LATEX Data Management Office (DiMarco et. al., 1994, in
progress) after the measured data had been thought to have been corrected for
the above problems. The details of the analysis are contained in that study.
The surface directiocnal wave spectra were developed using linear wave theory
to convert the pressure measurements to a surface wave spectrum. DiMarco et
al. (1994) qualified the results in Figure 2.6 noting that the "energy seen in
the 5-7 second period band can be attributed to nonlinear wave-wave
interaction of the longer wave periods of 10-14 seconds" and that the
"measurements should be regarded only as a first approximation". BAcceording to
their analysis the maximum significant wave occurred at 0i00 GMT on August
26th had a height of 8.9 m and a peak period of 10.7 seconds. Several hours
earlier, a peak period of 14.2 sec was observed with lower wave heights.
These are the largest measured wave heights in Hurricane Andrew. Additional
work is underway at Texas A & M (personal communication) to determine the

correct wave energy in the high frequency end of the spectrum.
2.5 LATEX Current Velocity Data

The measured current velocity data represent the greatest source of
information due to the extensive installation of the LATEX program. Only one
current meter was lost during Andrew (at mooring 16) as the largest waves
passed through this location and several other nearby meters were damaged or
tangled with debris at some point in the hurricane. A total of 7 moorings (16
meters) were selected from the available data set of 31 meorings as having
potentially useful current velocities for model calibration. These moorings
are shown in Figure 2.2 and are also listed in Table 2.4. The dates were
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selected in order to obtain 90-day records for tidal analysis. These LATEX
moorings contained two meters in shallow water and three meters in water
depths greater than 45 m. Vector averaging meters were used at the surface
and in shallow water where wave contamination would be a problem.

The current meter measurements contain both wind-driven and tidal
components in the records. These components must be separated into tidal and
non-tidal components so that the non-tidal (wind plus inertial) can be
quantitatively compared to the wind-driven current velocity model results.

There are two indigenous problems in analyzing the tidal signal in the
northern Gulf of Mexico. First, the tidal currents are relatively weak
compared to the mean, inertial and wind-driven currents. Second, the 0
compenent of the tidal current has a period (25.8194 hrs) which is very close
to the inertial period at the latitudes of the northern Gulf of Mexico. Table
2.5 shows how the period of the O, constituent compares to the inertial
periods at selected latitudes and also the synodic time regquire to be able to

separate these constituents.

Theoretically, with nearly all moorings being located south of 29 deg-N
for record lengths greater than 42 days, the inertial currents should not be a
problem. However, it appears that the wind currents rotate at periods near
the inertial period which overlap the 0, and K, constituent's period.
Therefore a sufficiently long record is needed to minimize the influence of

the inertial current.

In order to evaluate the interference of the inertial currents on the
tidal current analysis, an 180~day record was analyzed using mooring 12 day in
deep water at 28 deg-N. The record was broken into two subsets of 90-day
intervals and the latter subset broken into two subsets of 45-day intervals.
Hurricane Andrew measurements were in the second 90-day subset and then in the
first of the 45-day subsets. The results are given in Table 2.6 for both the
current velocity amplitude (speed) and phase (degrees) for the east-west and
north-scuth components for the 5 largest constituents. The mean current over
the record length and the fractional residual variance are also given, the
latter being a measure of the current velocity attributed to non-tidal
sources. A least-square, best-fit type of tidal analysis program was used to

determine the tidal amplitudes and phase angles from the measurements.

The results in Table 2.6 show that the tidal current velocity is
relatively very weak. Assuming that the 180-day record starting on 15 April,
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1992 was sufficiently long that‘aﬂy inertiai cufrent would not be significant,
then the fractional residual variance attributed to the non-tidal component is
.99 and .98 for the E-W and N-5 components, respectively (or .01 and .02 for
the tidal compenents, respectively). For the two 90-day records starting 15
April, 1992 and 22 July, 1992 the same tidal current fractional residual
variances have increased very slightly to .02 and .03 -.04, respectively. The
increase in amplitude of the O, component occurred mainly in the record which
included Hurricane Andrew. When this latter 90-day record starting on 22
July, 1992 was divided into two 45-day records, the presence of the inertial
currents in Andrew was observed in the record containing Andrew, as it
strongly increased the amplitudes of both the K; and 0, components and thereby
increased the fractional residual variance to .10 for both the B-W and N-S
tidal current components. The 45-day record which did not contain Andrew was
relatively unchanged.

The conclusion from the above analysis was that a 180-record (or longer)
would probably be the best for the tidal analysis to minimize the influence of
the inertial currents on the diurnal tidal components. However, in practice,
this is very hard to obtain due to mooring/instrument malfunctions. A
continuous 50-day record for the period encompassing Hurricane Andrew was
found to be available for all but two meters (14 middle and 19 middle) and
this period was used in the subsequent current velocity analysis to detide the

measured current velocity record.

The results of the current velocity analysis at mooring 12 (surface
meter) also show that the mean current varied considerable depending on the
pericd of observation. For example, the 180~day record shows a very weak mean
current.. When broken into the two 90-day components, the mean current is
shown to consist of a moderate current to the northeast for the first 90-days
followed by an egqually strong current to the west-southwest for 90-days.
Finally, when this latter 90-day current was divided into two—45 day periods,
the mean current in both records was still west-southwest, but with
considerably different velocities. Therefore, the mean current is gquite
variable with time in response to external forcing. No seasonal patterns were

investigated.

The results of the measured current velocity analysis are summarized in
Table 2.7 by mooring with the order given by north to south orientation and in
Table 2.8 by meter position on the mooring (top, middle and bottom). The
gurface tidal currents in shallow water have increased speeds relative to the
deep water surface current meters as expected. Also, the moorings further to

11



the west (18 and 19) have stronger semi-diurnal components, especially in the
north-south direction. Finally, the maximum values of the total, the tidal
and the non-tidal currents have been summarized in Table 2.9.
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3. Surface Wind Field Specification
3.1 Definition

The reference height and temporal average of the wind fields required to
drive sophisticated wave and hydrodynamic models must be precisely defined.
Most such models are forced by winds referred to an elevation of 10-m or 20-m
above mean sea level. Unlike measured winds or estimated winds, which are
subject to considerable variability depending on the time interval over which
the cbservation is made {for example, gust, l-minute sustained winds etc.), a
wind field used to force an ocean response model is the equivalent of an
averaging process taken over a time interval sufficiently long te include all
temporal and spatial variations induced by turbulence, whether mechanically or
convectively produced. Usually, 30-minutes to l1-hour is a sufficiently long
interval to produce a stable average from an anemometer trace, and the
analysis winds therefore are usually referred to as 30-minute or l-hour
average winds. In other words, as far as turbulent fluctuations are concerned,
there should be no significant difference between these two averaging
intervals, though in practice, because of secular changes in the wind field
due to motion or intensity changes of weather systems, it is often difficult
to recover a stationary l-hour average wind from an anemometer at a fixed

site.

Constant gust factors are usually invoked to transform the model based
extremes of the l-hour average wind to shorter averaging intervals, though
meore complicated gust factor models have been introduced in recent years. For
tropical cycleone dominated wind regimes the following gust factors (Black,
1994) are recommended:

3-second/l-hour 1.50
l1-minute/l-hour 1.25
10-minute/l-hour 1.09

3.2 Wind Field Analysis Methodology

The analysis method adopted recognizes and responds to the following
special difficulties of the problem of specifying surface winds in tropical

cyclones.

1. Actual measurements of surface winds over water in tropical cyclones,
especially their inner cores, are rare, so analysis schemes based mainly on

the synthesis and objective analysis of measured wind data (such as used
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generally in extratropical regimes) are of limited value. Some progress has
been made in synthesizing wind data from different sources such as coastal
stations, buoys, C-MAN stations and aircraft into a kinematic analysis (e.g.
Powell and Houston, 1993) but a critical data set is usually produced by
compositing data acquired over many hours (6-12 hours) and usually is only
possible when the storm is near a coast. For this study, wind fields are
required at regular half-hourly time intervals throughout the northern half of
the Gulf of Mexico and throughout its life history in the Gulf.

2. Because of 1, standard sources such as the wind field analyses
produced in real-time at NWP centers or storm reports produced at forecast
centers such as NHC cannot be relied upon to provide the required surface
winds, though the later source provides useful data on storm track, eye
pressure and overall storm structure as revealed by radar and satellite

composites.

3. Simple parametric models of the surface wind field in tropical
cyclones, which hawve been used for many years for research and forecasting,
impose a relatively simple axially symmetric radial wind speed and inflow
angle profile shape to all storms and model storm motion and asymmetry effects
in very simple ways. However, real storms may depart considerably from the
assumed parametric shapes and exhibit considerable variability in structure

from storm to storm and even within the eveolution of single storm.

The method used in thig study has been applied in over three dozen
studies involving almost all basins on the globe within which tropical
cyclones can occur. The method starts from raw data whenever possible and
includes an intensive reanalysis of traditional cyclone parameters such as
track and intensity (in terms of pressure) and then develops new estimates of
the more difficult storm parameters, such as the shape of the radial pressure
profile and the ambient pressure field within which the cyclone is embedded.
The time histories of all of these parameters are specified within the entire
periocd to be hindcast. Storm track and storm parameters are then used to
drive a numerical primitive equation model of the cyclone boundary layer to
generate a complete picture of the time-varying wind field associated with the
cyclone circulation itself. That solution is then compared to time histories
of accurately measured surface winds (reduced to standard height) at available
measurement sites, and if necessary the storm parameters are varied and the
model iterated until good agreement is obtained between the modeled wind field
and the discrete high-quality wind observations available.
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3.2.1 Numerical Vortex PBL Model

This model, first developed into a practical toel in the Ocean Data
Gathering Program (ODGP) (Cardone et al. 1%78), was first developed to provide
a complete descripticn of the surface winds in the boundary layer of a
tropical cyclone from the simple model parameters available in historical
storms. The model is an application of a theoretical model ¢f the horizental
air flow in the boundary layer of a moving vortex. That model solves, by
numerical integration, the vertically averaged equations of motion that govern
a boundary layer subject to horizontal and vertical shear stresses. The
equations are resclved in a Cartesian coordinate system whose origin
translates at constant velocity with the storm center of the pressure field
associated with the cyclone. Variations in storm intensity and motion are

- represented by a series of quasi-steady state solutions. - In the original

practical implementation the model, the vertically integrated boundary layer

wind was related to the surface wind using an empirical scaling law.

The original theoretical formulation of the model is given by Chow
(1571). A similar model was described more recently in the open literature by
Shapire (1983). The version of the model applied is this study is the result
two major upgrades, one described by Cardene et al., (1992) and the second by
Cardone et zl. (1994). The first upgrade involved mainly replacement of the
empirical scaling law by a similarity boundary layer formulation te link the

surface drag, surface wind and the model vertically averaged velocity

components.

The second upgrade added spatial resolution and generalized the pressure
field specification. A concise description of the theoretical formulaticn of

the model and of its practical implementation in upgraded form is given by

Thompsen and Cardone (1994).

The model pressure field is described as the sum of an axially symmetric
part, and a large-scale pressure field of constant gradient. The symmetric

part is described in terms of an exponential pressure profile

P=p,+Apexp(-r[r) b

where P, 1is central pressure, Ap is storm anomaly and 7, is a scaling
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radius nearly equivalent to the radius of maximum wind and b is an additional
scaling parameter shown by Holland (1980) to be necessary to match a wide
range of storm types.

The model is driven from parameters that are derived from data in
historical meteorclogical records and the ambient pressure field, which is
prescribed in terms of an equivalent geostrophic "steering" current. The
entire wind field history is computed from knowledge of the variation of those
parameters along the storm track by computing solutions, or so-called
"snapshots”, on the nested grid as often as is necessary to degcribe different
stages of intensity, and then interpolating the entire time history from the

snapshots.

The model was validated originally against winds measured in several ODGP
storms (i.e. Gulf of Mexico storms Camille, 1969, Felice, 1970, Edith, 1971).
It has since been applied to nearly every recent hurricane to affect the
United States coast. Comparisons with over-water measurements from buoys and
rigs support an accuracy specification (rms) of about * 20 degrees in
direction and about * 2 meters/second in wind speed (l-hour average at 20-
meter elevation) with most of these model verifications published in the open
literature (see e. g., Ross and Cardone, 1978; Cardone and Ross, 1979;
Forristall et al., 1977; 1978; 1980; Cardone et al., 1992).

As presently formulated, the wind model is free of arbitrary calibraticn
constants which might link the model to & particular storm type or region.
For example, differences in latitude are handled properly in the primitive
equation formulation through the Coriclis parameter. The variations in
structure between tropical storm types manifest themselves basically in the
characteristics of the pressure field of the vortex itself and of the
surrounding region. The interaction of a hurricane and its environment,
therefore, (except near mountainous terrain and large discontinuities in
surface roughness) can be accounted for by a proper specification of the
input parameters. The assignable parameters of the planetary boundary layer
{PBL} formulation such as planetary boundary layer depth and stability are
functions mainly of air-sea temperature difference. The sea surface roughness

formulation is taken from a standard over-water drag law.
3.2.2 Determination of Hurricane Andrew Model Parameter

Storm Track. The track of Andrew must be determined as precisely as
possible for most applications because. Given the very small spatial scale of

the wind field, errors of the order of the radius of maximum wind (as small as
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7 miles in Andrew) induce large errors in the modeled winds, sea states and
currents at specific locations of interest (e.g. measurement sites, damaged or
toppled platforms etc.) even if the numerical models have modelled the
distributions of wind, sea state and currents relative to the center
perfectly. The most important data sources for track specification are
aircraft, satellite and radar center fixes. Figure 3.1 shows the data
gathering f£light tracks through the circulation of Andrew and the center
penetrations available from the many reconnaissance missions flown by US Air
Force and NOAA aircraft into Andrew in the Gulf of Mexico. Figure 3.2 is an
example of the flight level winds acguired in one US Air Force flight.
Synoptic data from surface stations (ships, buoys, C-MAN and coastal stations)
are of less use because the eye of the storm rarely passes over such sites.
For example, Figure 3.3 shows the synoptic reports of surface wind and
pressure measured from platforms, buoys, C-MAN stations and merchant ships
data available as Andrew approached the continental shelf at 1200 UT 25
August. Note that there are no surface observations within 200 km of the
center at this time. A complete set of plots is included in Appendix B.

The track of Andrew was determined subjectively using fix information
from aircraft, satellite, radar (including on-bcard radar and National Weather
Service radar sites at Slidel, Baton Rouge, Lake Charles, LA. and Houston,
TX.), and synoptic fixes. The best track {6 hourly) as determined by the
National Hurricane Center (NHC) was also used as a guide. Figure 3.4 shows
these fixes and the NHC track. The fix data show a wide scatter about the NHC
best track, with differences of up to 50 km in the waters just off the
Louisiana coast. To reduce this scatter, the fix data were ranked in the
following order: aircraft fixes, radar, satellite, then synoptic fixes.
Aircraft fixes were further ranked by the accuracy of the fix as given in the
flight report (detailed vortex message). Radar sites were alsc further ranked
by distance from the site to the storm (closer sites were given a higher rank)
and by the quality of the fix (poor, fair, good) as determined by the radar
operator. All fix data were reported to the nearest tenth of a degree, except
aircraft fixes, which are reported to the nearest minute. Satellite and
synoptic fixes generally were not used over water due to their large scatter,
but were used over land when aircraft fixes were not available.

Ranked fix data led to a greatly reduced scatter in the apparent track
of Andrew. Figure 3.5 shows the adopted track. The amount of data available
just off the Louisiana coast (from 25/18%Z to 26/12%Z) was sufficiently fine to
determine an hourly track, as shown in Figure 3.6. B 3~hourly track was used
for the rest of the hindcast period. The track just east of and over Florida
was not given as rigorous treatmwent since this part of the storm history is
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used mainly for model spin-up. The adopted track is very close to the 3-
hourly track adopted in a preliminary hindcast study of Andrew carried out by
Oceanweather in 1992 with small differences confined to the area of greater
resolution in the hourly section of the new track.

Model Parameters. The vortex model is initialized for each solution or
"snapshot"” from the following parameters: latitude, forward storm motion
(speed and direction), central pressure, scale radius of the exponential
pressure profile, Holland’s B parameter, the far~field pressure and magnitude
and direction of the geostrophic wind associated with the ambient pressure
field in which the storm is embedded. Table 3.1 shows the inputs ultimately
adopted. During the period modeled, 12 snapshots were generated by the model,
with intermediate windfields interpolated between the model sclutions.

The forward motion of Andrew was calculated using the best track with no
smoothing. Central pressure was determined almost exclusively by the vortex
messages filed by reconnaissance aircraft. Figure 3.7 shows the central
pressures adopted for each snapshot vs. the aircraft dropsonde values and the
NHC adopted 6-hourly pressures. Note that since the model calculated
snapshots are linearly interpolated in time to provide snapshots at
intermediate times, the snap times are deliberately chosen such that the
interpolated snapshots and windfields correctly represent the changes in storm
intensity. Central pressures over land were mainly determined by synoptic
fixes and satellite interpretation of Andrew. The far-field pressure and the
steering flow (speed and direction) are determined from reanalyzed isobaric
analyses of the pressure field surrounding Andrew. These parameters were

determined every & hours, then smoothed over the entire hindcast period.

The radius of maximum winds was estimated initially from the aircraft
reconnaissance data {as estimated from both the reported the eye diameter and
the radial distributions of flight level winds on eyewall penetration flight
legs as shown for example in Figure 3.8) on the assumption that the radius
does not vary significantly from flight level to the surface. As the center
approached shore, radar fixes reporting eye diameter were also used. Given
trial values for central pressure, the far-field pressure, and the radius of
maximum winds, the pressure profile of the azimuthally averaged vortex was
evaluated using Oceanweather’s PC-based Tropical System ARpalysis interactive
graphical system. Figure 3.9 shows a typical screen image. Time series of
reconnaissance information from aircraft is converted from absolute
latitude/longitude cooxdinates to coordinates relative to the translating
center using the best track interpolated to l-minute intervals. The
repositioned data are composited within +/- 3 hours of standard synoptic
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times so that comparisons to conventionél data are.possible. The data
distribution is shown in the window at the upper right hand part of the screen
of Figure 3.9. Winds are converted from flight level to surface 20 meter
winds using a simple reduction factor (Powell and Black, 1991) and displayed
in the window at the upper left of the screen. Surface pressures are
calculated using Jordan’s (1958) relationship between 700 mb height and sea
level pressure in cyclones and are plotted relative to the center as shown in
the window on the lower half of the screen. The analyst then iterates the
parameters of the pressure profile to arrive at a best fit. The pressure
profile determined by the central pressure, far-field pressure, radius of
maximum winds and Holland’s B can then be directly compared with the estimated
surface pressures from aircraft. The best fit parameters determined for each
composite in this manner are then smoothed over the entire hindcast periocd.
All fits are included in Appendix C. Note that nominal central pressure used
in the model does not always match the fitted central pressure due to the time
differential and errors in the pressure reduction relationship.

3.3 Wind Field and Data Comparisons

The computed wind fields are shown in the form of wind barb plots at
three hourly intervals in Appendix D. Andrew emerged off the west coast of
south Florida as a small intense vortex, with central pressure of about 950 mb
with radius of maximum winds of less than 10 miles. As Andrew moved toward the
upper Gulf ccast, the forward motion slowed from 18 knots to about 10 knots,
eyewall radius expanded to about 16 nm and the central pressure lowered to
936 mb.

Figure 3.10 shows the wind field just before the center crossed the shelf
break. The winds plotted are effective l-hour average wind speeds at 20 m
height. A finer view of the wind field at this time is given in Figure 3.11
{see Appendix E for additional plots at this resolution), which shows the
winds plotted at 1/4th the resolution actually used for the ocean response
hindcasts; that is, winds are plotted at every other row and column of the
grid. The maximum surface winds at this time were close to 50 m/s in a small

area of the front and right quadrants relative to storm motion.

The comparisons of the calculated wind fields and the modeled wind fields
at high-quality measurement sites are shown in Figure 3.12 - 3.19. For these
comparisons, wind speeds are reduced to 20 m height using the surface boundary
layer model of Cardone et al. (1991) which uses a wind profile model
congistent with that used in the vortex model. At buocy 42003, the time
histories of wind speed and direction are generally well simulated. The
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maximum model wind speed of 29 m/s is about 3 m/s greater than the maximum
buoy wind speed though the buoy may have not sampled the absolute maximum wind
speed at this site. At buoy 42001, which was further away from the center of
Andrew, both buoy and model wind speeds peak at about 12 m/s with good
agreement in wind direction. At buoy 42007 located far to the right of the
track, the maximum wind speed of 16 m/s is well matched by the model with a
gslight lag. Model wind direction is turned clockwise by about 15 degrees from
the buoy wind for most of the history. This may be attributable to the over-
land trajectory of the air reaching the buoy for the indicated wind
directions. The vortex model does not include a fetch~dependence in
adjustment of the boundary layer flow downwind of the land-water discontinuity
but instead adjusts the flow to over-water exposure immediately.

The comparisons of modelled and measured winds at Bullwinkle and Lena
platforms show somewhat larger differences in wind gpeed near the times of
closest storm approach than exhibited at the buoys. At Bullwinkle, which is
located left of the track, the modeled winds are 2-4 m/s greater than the
adjusted measured winds. At Lena, the model winds are 2-4 m/s lower than the
measured winds within about 6 hours of the closest approach. It is difficult
to judge to what extent these differences represent systematic effects in the
modeled wind fields or to the platform winds which are alse susceptible of

systematic effects.

The measured winds at the C-MAN stations near the coast (BURL1l, GDIL1,
DPIAl) are probably affected by the upwind over-land trajectory of the air
flow, especially at GDIL1 and BURL1. This is the most likely explanation for
the tendency for the modelled wind speeds to average froem 2-4 m/s greater than
the measured wind speeds at the €-MAN stations while wind directions agree

closely.

Overall, the agreement between measured and modeled winds in Andrew is
comparable to that found in other CGulf of Mexico storms modeled this way.
Taken over all sites (except the probably sheltered nearshore C-MAN stations)
the mean and standard deviation of the wind speed differences are .22 m/s and
2.3 m/s respectively (see Figure 3.20). At least part of this difference may
be attributable to small scale effects in the wind fields (e.g. rain band
disturbances) not modelled and to systematic errors in the measurements

themselves.
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. Wave Hindcast
4.1 Background

The wave hindcast model adapted for this study is a so-called fully-
discrete sgpectral wave model. That is, the wave spectrum is regsolved in
discrete frequency-direction bins, a grid of points is laid out to represent
the basin of interest, and a solution is obtained based upon integration of
the spectral energy balance equation, a process which successively simulates,
at each model grid point, and for each time step, the physical processes of
wave growth and dissipation (through the source terms of the energy balance)
and wave propagation.

Three classes of spectral models are generally recognized. First-
generation models (1G), such as the ODGP model (Cardone, Pierson, and Ward,
1976), are part of the family of fully-discrete spectral models originally
proposed by Pierson, Tick, and Baer (1966). This type of model is
characterized by a source-term formulation which does not include an explicit
representation of conservative transfers of energy between spectral
components, believed to be asscciated with regsonant non-linear wave-wave
interactions. Second-generation models (2G) were introduced to include at
least a parametric representation of a wave-wave interaction source term,
while third-generation (3G) models, originally introduced as the WAM model
(WAMDI Group, 1988) attempt to model the wave-wave interaction source term

rigorously.

The formulation of the ODGP model, which we shall henceforth call OWI1lG,
has been described in detail in past studies. The skill of the model has also
been documented in numerous studies, including Reece and Cardone (1982},
Cardone and Greenwood (1987), and most recently in Cardone et al. (1994a)
wherein the skill of the model in extreme events is compared to that of recent
2G and 3G models. This latter study (as well as a number of unpublished recent
studies) suggest that the differences in skill between OWI1G and the WAM model
are subtle in most wave regimes, and usually the differences are masked by
wind errors. A 3G model requires about an order of magnitude more computer
time than the 1G model for a given gpectral and spatial resolution. OWIlG was
in fact first developed for Gulf of Mexico hurricane modeling and has already
been applied to hindcast hurricane Andrew in a previous study (Oceanweather,
1992). In this study Oceanweather's adaptation of the 3G mocdel, henceforth
OWI3G, 1is adapted to the Gulf cof Mexico on a grid of about 10 km spacing.
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4.2 WwWave Model Specifications

Grid System

The grid system is a latitude-longitude array as shown in Figure 4.1,
with the southwest corner of the grid at 23.938N, 94.940W, with spacing of
0.1022 deg in latitude and 0.1150 in longitude.

Spectral Resolution

Direction: 24 bands. Band 1 is centered 7.5° clockwise from
true north, the width of each band is 15°

Frequency: Band 1 is centered on 0.039 hz; the bands increase in
geometric progression (ratio = 1.10064) to band 23, .32157 hz. This binning is

negligibly coarser than used in WAM (ratic = 1.100).

Propagation Scheme

The downstream interpolation scheme described by Greenwood et al. (1985)
is used throughout. Propagation over a time step at a grid point is
implemented within the alternate growth-propagation cycle in the model
integration by forming linear combinations of spectral variances at
neighboring points. The weights used are extracted from a precomputed table of
propagation coefficients, which vary by latitude only in deep water, and are
specific to each grid point in shallow water. The table of interpolation
coefficients is calculated based upon great circle wave ray paths in deep
water; in shallow water the weights are calculated following a ray tracing
study through a digital bathymetry resolved on the wave model grid.

The water depth at each grid point was computed as a simple average of
all depths at S5~minute intervals within the grid domain contained in the U. S.
National Geophysical Data Center (NGDC} ETOPOS global topographic-bathymetric
digital data base. The version of ETOPOS obtained by Oceanweather (circa 1988}
contained erronecus data in areas of steep gradients and has been corrected in
previous studies by reading off depths at 5-minute interwvals directly from
hydrographic charts covering the areas affected. Figure 4.2 shows the depth
field over the whole domain of the model, and Figures 4.3-4.5 show the depth

field contours for specific regions.

The limiting water depth for shallow propagation and growth processes is

taken according to the conventional definition:
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kd > w , where k = .006123 m " for the .039 hz frequency bin. Thus,
propagation by depth-dependent ray tracing is executed at points within 20 km
in any direction of points with depths 513 m or less.

OWI3G Spectral Growth/Dissipation Algorithm.

The theoretical basis of the spectral growth algorithm used in OWI3G
follows closely that of the first 36 model developed during the 1980's through
the efforts of an international panel of wave modelers, (including Cardone and
Greenwood of Oceanweather)} known as the WAM group. The WAM model was
originally described by WAMDI Group (1988). In WAM, separate socurce terms for
the physical mechanisms of atmospheric input, S,, wave-wave interaction, S,
and dissipation by whitecapping, S,, (and in shallow water dissipation by
bottom friction, §,) are specified explicitly and the source term balance is
integrated to yield the net development of the spectrum over a time step of
integration without arbitrarily forcing of spectral shape or specification of
an external limit to growth. However, in the original development of the
model, considerable experimentation with and tuning of the input and
digsipation source terms was carried out to achieve growth rates and
asymptotic behavior under constant winds in agreement with field data. The
wave-wave interaction "apparent" source term, S,, is not considered tunable
and is a parameterization of the exact nonlinear interactions as proposed (see
e.g. Hasselmann and Hasselmann, 1985). This so-called Discrete Interaction
Approximation {DIA) is alsco described in WAMDI Group (1988).

OWI3G combines a source term representation and integration scheme based
upon WAM with the propagation scheme used in OWIiG. The source terms follow
the theoretical forms used in WAM but with different numerics and code and
with the following modifications. First, a linear excitation source term is
added to 8, taken as a downscaled variant of the term used in ODGP. This
allows the sea to grow from a flat calm initial condition in OWI3G, unlike all
cycles of WAM which require an artificial warm start from a prescribed initial
spectrum. The exponential input term is the empirical form of Snyder et al.
(1981) in which S; is taken as a linear function of friction velocity U..
However, unlike WAM in which U. is computed from the 10 meter wind speed U,
fecllowing the drag law of Wu (1582), in OWI3G, a different drag law is used
developed in the model tuning stage. That drag law follows Wu closely up to
about 20 m/sec then becomes asymptotic to a constant at hurricane wind speeds.
The dissipation scurce term, S; is also taken from WAM except that the
dependence on frequency is cubic rather than quadratic. Finally, for S,, the
DIA is adopted except that two modes of interaction are included (in WAMDI the
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second mode is ignored).

Oceanweather's version of 3G as just described was developed based upoen
tuning runs against the fetch-limited growth benchmark for 20 m/s wind speeds
under constant winds used to tune WAMDI initially, as well as in repeated
trial hindcasts of a well-documented moderate extratropical cyclone (SWADE
IOP-1, see Cardone et al., 1994b) and two intense Gulf of Mexico hurricanes
(Camille, 1969; Frederic, 1979). The bottom friction source term is a simple
gquadratic law with a specified tunable friction factor. OWI3C¢ uses the same
friction factor found in the North Sea version of WAM (NEDWAM) to vield
skillful shallow water predictions. That factor, .076, is exactly twice the
value originally proposed for WAM, which was based upon studies of pure swell
attenuation in the North Sea JONSWAP experiment. RAn interesting comparison of
the performance of OWI1G and OWI3G in an extratropical setting is given by '
Khandekar, Lalbeharry and Cardone (1994) which also further documents OWI3G.

4.3 Prior Validation of OWI3G Wave Model

The wave model selected for this study is relatively new and the
relatively few wave measurements available near the center of Andrew provide
only limited opportunity to validate the Andrew OWI3G hindcast. Therefore, it
is useful to summmarize in this section several recent studies, some as yet
unpublished, in which OWI3G has been validated, especially studies involving

extreme wind forcing.

It is difficult to separate the validation of a wave model from the
validation of the underlying wind fields. While the differential properties
of alternative wave hindcasts driven by a common wind field reflect mainly
differences in the wave model growth/dissipation physics, the absolute level
of the skill in the wave hindcasts with OWI's family of models appears to be
mainly determined by errors in the wind fields (e.g. Cardone and Szabo, 1985;
Cardone et al., 1994b).

The OWI family of wave models have already undergone extensive previous
validation with far more validation for OWI1G than OWI3G. For example, in the
original ODGP program, OWI1lG hindcasts of significant wave height, HS,
spectral peak period, TP, and frequency spectra, were compared to measurements
acquired at offshore platforms in five Gulf of Mexico hurricanes, including
hurricane Camille. Since then, the model has been applied to many storms to
affect the U.8. Gulf and East Coast coasts including Eloise and Belle
(Cardone and Ross, 1979). Hindcast and measured directional spectra were
evaluated in Eloise and Delia by Forristall et. al (1978, 1980). The model
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skill in specification of peak storm HS and associated TP at a site in a storm
was evaluated by Reece and Cardone (1982) for hindcasts made in four different
types of meteorological systems (including tropical and extratropical systems)
in three different basins. In over 60 individual comparisons in 19 different

storms, the model hindcasts exhibited negligible bias (less than 0.5 m in HS),
and rms errore of less than 1 meter in HS and 1 second in TP.

A popular index of skill used by wave modelers is the scatter index,
which is defined as the rms error (or alternatively by the standard deviation
of the model-measured differences) divided by the mean of the data in the
measurement data set used for the validation, expressed in percent. For the
data of Reece and Cardone the scatter index in HS is 11.8%. OWIlG has been
shown, with a stable calibration (unlike many models which are retuned with
each application) to consistently provide a scatter index in storm peak HS and
TP in the range of 10-15%, wherever applied, as long as wind fields are
accurately specified. For example, Swail et. al (1991) report a scatter index
of 12.1% in BS and 11.3% in TP for hindcasts of severe storms off the west
coast of Canada. Cardone and Ewans (1992) report scatter index of only 9% in
HS and TP in hindcasts of severe storms off the west coast of New Zealand.
Comparable skill has been demonstrated in major validation studies conducted
in recent years as part of proprietary industry sponsored studies of tropical
cyclone generated waves in the Gulf of Mexico, the Taiwan Straits, and parts

of the South China Sea.

OWI3G, and the WAMDI model upon which it is based, have also been applied
in a number of recent model validation studies specifically involwving Gulf of
Mexico hurricanes. In WAMDI Group (1988), for example, the WAM model was
tested against hurricanes Camille (1969), Anita (1975) and Frederic (1279) and
was found to be essentially as skillful as OWI1G in specification of HS, TP
and frequency spectra. OWI3G was also applied to Camille and Frederic, which
formed part of the model tuning set of test cases. Figure 4.6 compares the
hindcast and measured time histories of HS in Camille at ODCGP stations 1 and 2
offshore Loulisiana. Figure 4.7 compares the hindcast and measured peak
frequency spectra. These latter comparisons suggest slightly greater skill for
OWI3G than OWI1G in specification of the TP and spectral shape. Figure 4.8
compares hindcast and measured HS time histories in hurricane Frederic at buoy
420032 and at the deep water Cognac platform offshore Mississippi. Directional
wave measurements were also available at Cognac. Figure 4.9 compares the
hindcast and measured frequency spectra and freguency distribution of mean
wave direction. Agreement is excellent and significantly improved over the
agreement achieved with OWI1G and early cycles of WAM in this case (WAMDI
Group, 1988). Figure 4.10 shows a comparison of frequency spectra at 42003 in
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Frederic for a time step when the total variances match closely.

OWI3G has also been applied to extratropical storms. The most indicative
case of wave model gkill is SWADE IOP-1 (Cardeone et al., 1994b), because the
wind field was specified in that case with unprecedented accuracy for an open
sea scenario. During SWADE-IOPl, a series of moderately intense storms moved
off the US East Coast and were sampled in a greatly enhanced array of moored
buoys. Figures 4.11 - 4.14 compare OWI3G hindcast and buoy HS and TP at deep
water buoys (OWI3G was run in a deep water mode for the SWADE IOP-1 hindcast).
After a 72-hour period of model spinup the hindcast is exceptionally skillful
and exhibits scatter indices in HS and TP which varies between 10-15% over

the buoys shown.

OWI3G has been recently applied to two extreme US East Coast storms
(Cardone et al., 1994a), namely the Halloween Storm of October 31, 1991 and
the "Storm of the Century" of March 13, 1993, The sgcatter index in storm
peak HS for OWI3G averaged over 9 buoys was 14% in the first storm and 10% in
the second storm. The corresponding statistics for OWI1G, also applied in that
study, were 14% and 15% respectively. Khandekar et al. (1994) investigated
skill in OWI1G and OWI3G (as adapted in the Canadian CSOWM wave model) in a
much gentler wave regime over a two week period and find the two models to be
skillful and virtually comparakle in performance with rms errors in time
series of HS of .6 m and in TP of about 2 seconds. The scatter index is 19% in
HS, higher than reported above for peak-peak comparisons because the mean of
the measured data for time series (about 3 m) is less than half the level of

data of storm peaks.
4.4 Andrew Wave Hindcast
4.4.1 Wave Model Input and Output

Input. OWI3G is driven by the time history of surface wind speed and
direction (l-~hour average at 20 m) at 30-minute intervals. The calculation of
friction velocity, U., from Uy uses an empirical drag law reached by tuning
OWI3G as noted above. The hindcast duration depends upon where the storm
enters the grid, and the storm speed of propagation. The duration is long
encugh to ensure that the wave (and current) response is fully spun-up (i.e.
lost memory of the cold model start) before peak conditions are specified in
all areas of interest in the basin, and also spun—-up in source regions of
swell which eventually propagate to areas of interest. The hindcast began at
0900 UT August 24, 1992 as Andrew was entering the east coast of South
Florida, and continued to 0000 UT August 27, 1992 about 12 hours after the
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center crossed the Louisiana coast. A total of 128 wind field were supplied
to the model for the hindcast.

Output. There are three output files of a hindcast run.

1. 1-line Summary Print File. This is a printable-only file of summary
output at selected grid points (l-line per point per time step) at either 30-
minute or hourly intervals. This file was used mainly to print results at a
few points for quick—-lock and checking purposes.

2. Fields File. This is a permanent archive digital file of the 17 wave
rfields"” wvariables listed in Table 4.1 saved at 30-minute intervals. This

file contains results at all grid points.

3. Spectra. This file contains the full two-dimensional spectrum at
hourly intervals. Since this is by far the most voluminous data file, it was
typically restricted to a relatively small subset of points.

These files are made as follows within the fractional growth and

propagation steps which comprise the numerical solution:

15 minutes growth

30 minutes propagation

15 minutes growth

intermediate print of l-line summary
15 minutes growth

30 minutes propagation

15 minutes growth

print l-line summary

archive fields

archive spectra
4.4.2 Evolution of the Wave Field

The general evolution of the wave field is shown in the series of plots
at three-hourly intervals which display contours of HS and unit length vectors
in the direction of the vector mean wave direction, VMD. Figure 4.15 shows
the HS/VMD pattern as Andrew's crossed the shelf break. The complete set of
plots is included in Appendix F. As Andrew entered the Gulf from Florida, HS
increased rapidly near the center to about 8 m within the first 9 hours in the
Gulf at around 2100 UT 24 August. By 0600 UT, 25 August, peak HS had
increased to 10 m and a pattern of radiated swell to the left and rear
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quadrants wag established in the VMD pattern. Between 1500 UT 25 August and
2000 UT August 25, the wave height pattern about the storm expanded and the
peak hindcast HS exceeded 13 m, reaching an absolute peak of 13.47 m at grid
point 4494 at 2000 UT 25 August, with associated TP of 14.12 seconds and
associated wind speed of 47.5 m/s. The maximum HS hindecast just to the right
of the eye began to decrease fairly rapidly after 2100 UT 25 August in
response both to the filling of the storm even before the eye reached land
{see Figure 3.7) and the effects of shallow water.

4.4.3 Model -~ Data Comparisons.

There are only four sites at which meaningful comparisons of hindcast and
measured sea states are possible: buoys 42003 and 42001, Bullwinkle platform
and LATEX station 16. Other available sites were either too far away from the
storm or so close to the cvoast as to be within 1 model grid spacing of land.
The comparisons between hindcast and measured HS and TP at these stations are
shown in Figures 4.16 - 4.19. For these comparisons the hindcast series were

taken from the grid point nearest the measurement site.

At buoy 42003, the first gsite to encounter the storm, the buildup and
decay of HS are very well simulated and the peak hindcast and measured HS
differ by less than 0.5 m. The TP series agree well overall, except for the
single buoy estimate near the peak HS of 17 seconds, at which time the
hindcast TP is about 12 seconds. It is quite possible that because the
hindcast only had about 24 hours of spin-up time at the time of closest storm
approach to 42003, that the hindcast spectrum ig still deficient in low
frequency energy but only slightly so, because the agreement in total energy
is quite gocd. Anocther factor contfibuting to the difference may be the
relatively low resolution of TP in the buoy spectra. At bucy 42001, as shown
in Figure 4.17, the peak hindcast and measured HS agree closely though there
is a lag of three hours in the hindcast time of occurrence of the peak. This
peak is contributed mainly by swell emanating from the central part of the
storm, as indicated by the very long period associated the peak. The arrival
of this swell energy is indicated in both the hindcast and measured time

series as the abrupt increase of TP at around 0900 UT August 25.

At Bullwinkle, as shown in Figure 4.18, the hindcast time series agrees
well with the measurements except that the hindcast HS is between 0.5 and 1.0
m higher than the measured HS within about 6 hours of the occurrence of the
peak energy. Only zero-crossing energy, TZ, is available at Bullwinkle. The
model derived TZ, which is computed from the =zeroth and second spectral

moments, are at times up to 1.7 seconds lower than measured, suggesting again
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that there may be a small deficiency of low frequency energy in the hindcast
spectra in the southwest quadrant of thé storm:

LATEX station 16 potentially is the most interesting and valuable
comparison site because the eye passed very close to this station, and the
water depth is in a range where shallow water physics plays a significant
role. Unfortunately, there is as yet no definitive analysis of the measured
data from the bottom mounted pressure transducer, and estimates of wave height
and period published to date have varied widely, as discussed in Section 2.
Figure 4.19 compares the hindcast with the latest LATEX analysis (DiMarco et
al, 1994) which gives a peak HS of 8.9 m, in close agreement with the hindcast
peak HS of 8.7 m. The time histories of hindcast and estimated TP also agree
quite well. The difficulty with the data at this station however, is
indicated in the frequency spectrum associated with the peak sea state at
station 16. The analysis indicates a double-peaked spectrum with one peak at
around 10-12 seconds, and a second peak around 5-7 seconds with a peak density
there nearly half the density of the main peak. The hindcast spectra do not
support a double peaked frequency spectrum, and it is indeed difficult
physically to explain such a significant perturbation in the tail of an active
storm spectrum. Additional analyses of the data which consider possible

strong non-linearity in the sea state are underway at Texas A&M and the early

“indication is that the reanalysis will result in lower wave heights (perscnal

communication). Of course, there is alsc the possibility that the overturning
and partial burial of the transducer just before the peak sea state was
encountered at this site have caused errors which are not correctable in a
post—analysis and that the true condition at this site may never be known. It
is interesting to note that the 3G model hindcast is very skillful at this
site right up until the time of instrument overturning and disagrees only
thereafter, suggesting the possibility that the hindcast is quite accurate
throughout the time history, and that the deviation thereafter is due to
instrument and analysis problems. On the other hand if wave heights were truly
lower than hindcast right at and after the storm peak, this could be
attributed to an additional attenuation mechanism which is not included in the
model physics such as enhanced bottom attenuation due to a sudden change in
bottom sediment characteristics {(e.g. an invasion of mud) or to wave-current

interactions.

Taken over all the available measurement sites, the agreement between
hindcast and measured time histories of HS is shown in Figure 4.20a in the
form of a scatter plot and difference statistics. The mean difference is just
.05 m and the standard deviation of the differences is .69 m, with almost half
(the ideal) of the points on the plot above the 45 degree line of perfect fit
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(ratio = 0.47). These differences also appear to characterize the storm peak

sea states and are consistent with accuracy achieved in prior studies with the
modeling technology applied here. Figure 4.20b shows the same type of
The Bullwinkle comparisons are omitted

comparsion for spectral peak period.
The

from this plot because only zero-crossing period was available there.
mean and rms diferences are .07 sec and .67 sec respectively and the ratio of

points is exactly 0.50. This skill was achieved without any additicnal tuning

of OWI3G.
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5. Current Hindcast
5.1 Background

Previous efforts to simulate circulation during tropical cyclones have
suffered from a lack of ocean data for model verification. The passage of
Tropical Storm Delia in 1973 has been reproduced by Forristall et al. (1977},
Spaulding and Isaji (1985), and Keen and &lingerland (1993a). All three
studies reasonably reproduced the flow measured at a single location, the
Buccaneer Platform. However, this mooring was located directly along the storm
path. Until now, no current data has been reported for locations near the
storm but not along its path.

For Tropical Storm Delia, Keen and Slingerland (1993a) discussed not only
the local flow field, but also that for the entire NW Gulf. The model
predicted an evolving circulation pattern that swept across the shelf from New
Orleans to Galveston, where the eye made landfall. Currents were shoreward to
the right of the eye and generally offshore to the left (looking along the
storm path). Strong currents continued to flow offshore and southwestward
after landfall because of the ebbing storm surge. The peak of this coastal
trapped wave was where the eye made landfall, Galveston. This pattern of
coastal surface heights relative to the storm track is supported by tidal
station data from historical storms. Results for several historical
hurricanes in the western Gulf of Mexico (Keen and Slingerland, 1993b) support
the conclusions of the Delia study. However, this work also highlighted the
importance of coastal geometry in determining the flow pattern, with
distinctive patterns for broad, straight coasts, curved coasts, and narrow
coasts. This previous work suggests that the flow field within the present
study area, the Louisiana shelf, should consist of onshore flow to the west
near New Orleans and offshore flow near Galveston. However, the presence of
the Birdfoot Delta immediately east of the storm track will significantly
alter this pattern. The previous work neglected stratification in studying
tropical storm circulation because of the generally well-mixed nature of the
water column during turbulent events. However, more recent work (Keen and
Glenn, 1994a,b; Keen et al., 1994) has demonstrated the importance of
stratification in controlling flow directions within the water column. This is
especially true away from the radius of maximum winds. Downwelling flows will
likely develop within 100 km of the eye. Thusg, it is useful to include
stratification in a model of regional flow during tropical cyclones.
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5.2 Hindcast Method

With previous results in mind, this simulation study uses the
hydrodynamic model described by Keen and Slingerland (1993a). Equations for
temperature and salinity are also included in the model used in this study.
The horizontal grid gize ig 10 Km as used in the wind and wave modeling. The
grid used for the wind and wave hindcast covers the eastern Gulf and stops at
94.5 W longitude. Although this size covers the study area fully, it does not
allow sufficient down-coast space for development of the storm surge. This
trapped coastal wave can extend for hundreds of kilometers along the coast to
the west. This problem was alleviated by using a different grid with the same
-horizontal resclution. This grid is centered on the mooring arrays and
significantly improves the modeled circulation in the west.

The large size of the resulting grid (Grid A), 139x44, requires
gignificant computation time and is prohibitive for evaluating turbulent
mixing parameterizations. Therefore, a grid (Grid B) of dimensions 41x29 was
introduced as well. These grids are shown in Figure 5.1. Several different
choices of vertical resolution were used, with the greatest density of levels
concentrated in the upper 100 m of the water column. Grid A used 13 model
levels with the following thicknesses: Levels 1 to 10 are 10 m thick; Levels
11 and 12 are each 50 m in thickness; and Level 13 is 300 m in thickness. The
total depth of the model grid is 500 m. This depth is used to increase the
time step for integrating the model equations and it has been shown to be
acceptable for studies focusing on the shelf (Kéen, 1992). Grid B uses 11
levels: Levels 1 through 6 are 5 m thick; Levels 7 and 8 are each 10 m; Level
9 is 50 m; Level 10 is 100 m; and Level 11 is 300 m in thickness. The total
depth i1s the same as for Grid A. Grid B requires approximately 1/12 the
computation time as Grid A. In order to improve the barotropic response of
Grid B it was fit with an Orlansky boundary conditicon on the west for all
prognostic variables (i.e., currents, temperature, salinity, surface height,
and turbulent energy). This results in no gradient and permits mass and energy
to leave the model domain. The losses, however, were not significant for the
short duration of the simulations. Either of these model grids gives a
reasonable fit to the depths of the current meters during Hurricane Andrew.

Bottom friction is parameterized using a quadratic stress formulation
with a constant drag coefficient Cb. In these simulations Cb = 0.001. This
value is representative of the muddy bottom found throughout much of the
region. The quadratic wind stress was parameterized using a drag coefficient

Cs dependent on wind speed W.
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For W < 6 m/s Cs = 0.0011

I

For 6 < W < 22 Cs {(.61+.063*W)*.001

For W > 22 Cs = (1.0+.07*W)*,001

5.3 Regional Results.

The storm surge, the evolution of which is shown in Figure 5.2 (a-f),
developed first along the eastern Gulf, with heights less than 10 cm at 1500
GMT RAugust 25. However, coastal water level was rising even along the Texas
coast. As the eye approached Louisiana the surge began to build west of the
birdfoot delta and trailed to the east. When the eye made landfall (about 0900
GMT, August 26), a peak of about 2 m cccurred west of New Orleans. The wave
was trapped by the wind pattern associated with landfall. After landfall the
wave relaxed and propagated to the west as far as Galveston before being
damped. By 2100 GMT Rugust 26 coastal water levels were slightly elevated from
Florida to Louisiana and a trough was located at Galveston. Similar

responses have been noted in previous modeling studies.

The evolution of the surface current field is shown in Figure 5.3 (a-f).
Because of the short spinup used in this simulation, surface currents were
quite low throughout the Gulf at 1500 GMT August 25. Longshore currentslsouth
of New Orleans attained speeds of about 50 cm/s and were also present all
along the Florida coast. The weakening of currents to the west is partly a
function of the wind field which was not intended to capture synoptic
processes, rather than the primary storm forcing itself. Also, the wind field
was not extended to the western limit of this grid because its purpose was
only to permit a barotropic wave to propagate. Most currents were located near
the storm center and thus moved in a pattern across the open Gulf. Storm
currents greater than 1 m/s reached the mooring array by about 2100 GMT August
25. When the eye made landfall the strongest currents were located at the
coast east of the storm track. Currents of about 40 cm/s were generated by the
passage of the Kelvin wave to the west. After landfall the storm surge relaxed
and currents in excess of 1 m/s flowed seaward and to the west along western
Louisiana. Coastal flow had reversed direction and was to the east at this

time.

Surface temperature is a good indicator of both turbulent mixing and
upwelling associated with storm passage. At 1500 GMT August 25 (Figure 5.4)
turbulent mixing has resulted in a general decrease in temperature towards the
storm, with a strong gradient to the right of the path where divergence (and
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thus upwelling) is greatest. The pattern at 0900 GMT August 26 (Figure 5.5)
reveals even greater upwelling and mixing up to the coast, as well as onshore
transport of colder upwelled water from the slope. However, because of the
generally high temperatures on the shelf the temperature did not change much
near the coast. Near the outer moorings, however, a significant temperature
decrease occurred in the model. The lack of mixing in the west is because of

the much lower wind stresses away from the storm track.

The performance of the model based on Grid B (Figure 5.6 a-c) can be
evaluated during the storm peak using surface currents. At 2100 GMT August 25
currents near the coast are larger than for Grid A and they are more evenly
distributed away from the storm. Magnitudes are about the same at the eastern
mooring array. The smaller grid also produces more offshore flow along eastern
Louigiana at landfall (about 0300 GMT August 26) while predicting somewhat
weaker flow to the east. However, because of the weakness of western boundary,
despite the Orlansky boundary condition, flow is opposite after landfall. This
reflects the fact that the wave cannot propagate fast enough to the west. The
smaller grid is primarily able to reproduce the wind-driven response.

5.4 Model-Data Comparisons

Data Preparxation

Hindcast currents were compared to observations in two sets of plots. The
first set contains standard time series comparisons of the hindcast and
observed current speeds at the locaticn and depth of each current meter. The
second set compares the spatial distribution of the hindcast and observed
surface current vectors as the hurricane crosses the continental slope and
shelf in the vicinity of the moorings. These charts are important for
understanding how the observations at the different moorings are related.

The time series plots were easily constructed using the detided current
meter records, but the gpatial distribution charts required additional work.
The charts focus on the continental slope and shelf south of the Mississippi
Delta. For an initial view of their spatial distribution, observed current
charts were prepared at half hourly intervals for the 48 hour time period
spanning hugust 25-26. They are labeled by frame numbers 0 through 96 in the
appendix E. The current meter locations are marked with diamonds. Detided
gsurface current vectors are plotted for each current meter on a scale
equivalent to the distance traveled in 1/2 day at the reported speed. The
hurricane track is included for reference. The interpolated hurricane eye

locations (heavy cross) and radius to maximum winds (heavy circles) are
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included on each plot for reference.

The observed current charts can be summarized at six hourly intervals
beginning with Frame 6 GMT on Rugust 25 at 0300 GMT {(Figure 5.7 a-h). To aid
in their interpretation, the wind wvectors have been superimposed. The
hurricane is far tec the southeast and currents on the slope/shelf initially
are running between 10-30 cm/sec to the west or southwest with the weak winds.
8ix hours later in Frame 18, the hurricane is located just outside of the
southeast corner of the plot. Observed current speeds and directions are
nearly unchanged. In Frame 30, the hurricane hasg just crossed the 2000 m
iscbath. Surface currents over the shelf (200 m water depth or less) are
beginning to increase, but currents at the deepwater mocoring appear
unaffected. The hurricane just hits the 200 m isobath in Frame 42. Current
speeds along the eastern cross—shelf transect are clearly responding to the
hurricane wind field. Current directions are deflected to the right of the
winds. Along the western transect, the flow remains to the west and
southwest with slight increases in speed. By Frame 54, the hurricane is half
way across the continental shelf. The inshore surface current meter (19t) on
the eastern transect has failed. Strong currents at the shallowest working
current meter are directed to the northwest, perpendicular to the wind field.

Currents at the two deepest moorings along this transect oppose the wind
field and increase offshore. To the west, both current meters report flow to
the southwest. The hurricane has just made landfall in Frame 66. Strong
currents in the direction of the wind are experienced at the shallowest meter
on the western transect. Currents at the deep shelf mooring remain to the
south. Along the eastern transect, flows at the remaining shelf (14) and the
shelf break {13) moorings rotate clockwise to the northeast or east, while
flow at the deepwater station remains generally to the south. Moving from
Frame 66 to Frame 78 as the hurricane continues inland, the flow along the
western mooring is similar but the current direction has rotated to the east
at the deep station. Along the eastern transect, strong currents at the two
shelf moorings continue to rotate clockwise, while currents at the deep
mooring rotate counterclockwise. Continuing on to Frame %0, strong currents
along the entire eastern array continue to rotate clockwise until they are all
lined up with flow to the southwest against the weak winds. Flows at the

shallow western array sites remain to the southeast.
Time Series Plots

As of August, 1994, our best overall current hindcast is Run 26 in Grid A
of Figure 5.1, so the comparison with observations will focus on this run. The
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time series plots shown in Figure 5.8 a-m are considered first. In these
plots, the full 10 days of cbserved current speeds are shown. The hindcast
interval designated by the dashed lines runs from 0900 GMT on August 24 (day
237) through midnight GMT on August 26 (day 239).

Starting offshore and moving in aleong the eastern array, data is
available for the top and middle current meters of Mooring 12. The modeled
surface currents respond to the initial wind forcing near the correct time on
day 238, but the peak response of about 100 cm/sec is below that of the
observed 140 om/sec currents. Modeled currents at mid depth exhibit very
little response to the direct wind forcing on day 238. The observed mid-depth
currents exhibit an approximately constant speed near 20 cm/sec for several
days before and during the hurricane. Since the model does not contain the
forcing for the 20 cm/sec steady current before and during the storm, this
response is absent in the model results. The initial storm peak is followed
in the observations by a strong, surface intensified hurricane wake response.
The model also responds with a hurricane wake, but the surface intensification

is much less.

Mooring 13 has current meters at three depths. The top meter responds to
the direct wind forcing on day 238, followed by five peaks associated with the
hurricane wake. The modeled and observed surface currents respond quickly to
the wind and agree well with the obserwvations in terms of timing and height of
the peak. Modeled and surface currents decay just as gquickly as the hurricane
passes. The current meters then observe the strong currents associated with
the hurricane wake, but the model wake response in this case is much lower in
speed. At depth, the wake response after the hindcast produces the strongest
observed currents. Modeled currents at depth respond after the storm peak
with currents of similar 5-20 cm/sec magnitude, but the approach of the wake

peak at the end of the hindcast interval is not seen.

At Mooring 14, top and bottom current meters are available. In contrast
to Mooring 13, both current meters exhibit a strong direct wind driven
response as the hurricane passes on day 238. Current magnitudes at the
surface are slightly overpredicted and at the bottom are slightly
underpredicted. (This may be a result of insufficent vertical mixing.) The
timing of the modeled surface current response is correct, with the observed
strong currents beginning a few hours early and persisting for a few hours
later in the observations. At depth, the increasing current side of the peak
is matched better, but the currents decrease too soon. In both cases, the

wake response is evident in the model, but it is much weaker.
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At the shallowest mooring on the eastern array, Mooring 15, the surface
current meter failed near the peak of the storm, so the exact value of the
peak currents is unknown. The wind driven peak is strong in the bottom meter
and occurs geveral hours after the surface current meter failed. The wake
response is clearly present in the bottom current meter. The timing, height
and width of the current peak in the bottom current meter is nearly perfect.
The response to the wake is also present, but as before is smaller than the
observations. The response of the top current meter is well matched by the
model until the current meter failed. Although the exact height of the peak
is unknown, the model peak currents appear to be high at the surface.

The western array is located well to the left of the storm track. The
cbserved response to the storm along this array has been the hardest to
capture, requiring us to extend the hindecast grid to the west. At Mooring 18,
the shallower mooring along this array, the model clearly is responding with
three peaks at the surface, but the last peak does not persist as long as
observed. The bottom current meter is clearly responding to the direct wind
forcing on day 239, but the response appears to be delayed.

At Mooring 19, the deep shelf mooring on the western array, the model
wind driven response is again noted, and appears to be in good agreement with
the top and bottom observations. BAgain, three peaks are noted in both the

surface chservations and the model results.

Spatial bistribution Charts

The surface current spatial distribution charts (Figure 5.9 a-h) were
prepared from the model output every six hours and plotted over the ochserved
currents. Again starting with Frame 6 at 0300 GMT on August 25, the hurricane
center is well off the chart to the southeast. The initial response of the
model is a slow, broad surface flow to the southwest in agreement with the
current meters and a narrow coastal jet along the Mississippi Delta shoreward
of the array. Six hours later in Frame 18, the hurricane is centered just
outside the southwest corner of the chart. The deepwater response of the
current model to the approaching hurricane is observed in the southwest
corner. The coastal jet along the Mississippi Delta remains inshore of the
array. The slow, broad southwest flow continues to influence most of the

moorings.

By Frame 30, the hurricane has entered the grid and has crossed the 2000
m isobath. The deepwater response of the current model is an elliptical

cyclonic flow with the hurricane eye at the leading focus and the most intense
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currents to the right of the track. The coastal jet along with the broad
southwestward flow between the hurricane and the coastal jet are beginning to
intensify. The coastal jet is approaching the inshore current meter on the
eastern array, and the cobserved currents are more intense at this location.

As the hurricane crosses the 200 m isobath in Frame 42, the leading edge
of the strong cyclonic wind driven flow is directly over the eastern array,
reaching northward to the previously discussed coastal jet. The modeled
hurricane current directions are in good agreement with the observations, but
their magnitudes are somewhat smaller. Currents of the same magnitude as the
observations are confined to a smaller region near the radius of maximum
winds. This explains the narrower current peaks observed in the time series
plots. The highest currents appear to be confined to a smaller region in the
model results. Current speeds near the western array remain smaller than
observed. Directions at the onshore station remain westerly, and farther
offshore, the currents are beginning to rotate counterclockwise in response to

the wind, both in agreement with the observations.

In Frame 54, the hurricane has propagated half way across the continental
shelf. Very strong flows are predicted between the eye and the coast, but much
weaker flows are hindcast near the moorings. Hindcast current directions are
in good agreement with the observations. At Mooring 15 along the eastern
array, strong currents are observed flowing to the northwest, toward the eye.
Similar current speeds and directions are observed one row north on this grid.
Moving counterclockwise around the storm from Mooring 15, the hindcast
currents increase between the eye and the coast, then rapidly decelerate on
the western side, with southwestward flow near the shallow mooring and
offshore flow near the deeper mooring. The flow continues around the eye then
turns offshore into the hurricane wake just before it reaches the western

array.

By Frame 66, the hurricane has made landfall. The direct wind forcing
results in an onshore flow to the right of the track and an offshore flow to
the left. Strong alongshore currents to the west are experienced along the
coastline surrounding the landfall location. The observed strong eastward
currents at the shallow mooring along the western array are hindcast several
grid points to the east. After passing the shallow mooring, the offshore flow
weakens and rotates counterclockwise to east. The hindcast currents near the
deep mooring are of similar magnitude, but the directions 3 grid points north
are in much better agreement. Along the eastern array, the current is to the
northeast over the remaining shallow water mooring, but the flow is turning
offshore near the two deeper moorings as the currents respond to the incoming
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hurricane wake.

The hurricane has moved inland by Frame 78. Currents on the back side of
the hurricane are now along-coast to the east and are intensified shoreward,
in good agreement with observations along the western array. The eastern
array is coming under the cyclonic influence cf the hurricane wake, but the

observed current response is stronger.

Finally, in Frame 90, the well developed cyclonic wake is hindcast to be
approaching the eastern array. Observed currents are stronger, indicating
that the actual wake is more intense and may be larger or arrive sooner. To
the west, the eastward alongshore flow persists in the hindecast and in the

observations.

5.5 Discussion of Current Hindcast

The shallow water current model appears to do best in intermediate water
depths. At this time it appears to slightly underpredict in very deepwater,
slightly overpredict in very shallow water. It also appears to have a smaller
hurricane wake response. Some of the observations indicate that more mixing
may be regquired in shallow water. This may be achieved with the inclusion of
wave enhanced bottom stresses. Although the model captured the large scale
variability of the storm wind field, it can be improved by placing more effort
on the initial distribution of currents and density over the shelf. Assuming
that this is not feasible it is reasonable to expect discrepancies as seen at

the deep moorings pre-storm.
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6. Summary and Conclusions

This study may be viewed within the context of a series of industry and
government sponsored measurement programs conducted within the past 20 years
or so in the Gulf of Mexico to study the ocean response to the passage of
hurricanes, including the Ocean Data Gathering Program (ODGP) for winds and
waves, the Ocean Current Measurement Program (OCMP) for continental shelf
currents, the Ocean Test Structure (OTS) program for platform response, and a
number of Ocean Response to a Hurricane (ORH) programs which utilized air-
dropped current meters to measure mixed-layer storm driven currents. Data
acquired in these programs have been uged extensively to develop, refine and
validate numerical models. The data acquired in the ODGP provided a basis for
the development and calibration of numerical models for the accurate
specification of surface wind and wave fields in historical Gulf of Mexico
hurricanes (Cardone et al., 1976). The ocean current data acquired in the
OCMP and ORH have used by several current modelers to adapt and calibrate
current response models (e.yg. Forristall et al, 1977, Keen and Slingerland,
1993a).

The models applied in this study may be considered logical evolutions and
refinements of the these modeling capabilities. The surface wind field was
specified with an improved version of the method and model used in the ODGP to
specify surface winds. The almost continuous monitoring of Hurricane Andrew by
aircraft, satellite and shore based radars allowed the specification of storm
track to the maximum possible accuracy, within about +/- 10 km, or about one
grid spacing of the grids used for ocean response models applied. The
hindcast windfields are compared to available measurements sites, none of
which experienced hurricane force winds because the eye of the storm passed
more than 50 km from the closest measurement site. Based upon these data
comparisons and prior validation studies carried out with the same hindecast
methodology we estimate that the wind fields are specified to an accuracy
within +/- 2.5 m/s in wind speed and +/-25 degrees in wind direction (rms).
However, we can not state unegquivocally that these errors are randomly
distributed about negligible means. If they are not, then the systematic part
of the error is probably distributed by storm quadrant (e.g. wind speeds
slightly too high with too much inflow in one quadrant and vice versa in
another). We estimate the magnitude of systematic errors to be less than half
the magnitude of the errors quoted above.

The hindcast wave fields are verified against waves which in deep water
were measured at sites which again were never closer than about 50 km from the
storm center. The maximum waves in deep water were measured at Bullwinkle
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platform, which was located 74 km southwest of the center at closest approach.
The maximum measured HS at this site was 7.9 m, which may be compared to the
maximum hindcast HS of 8.7 m at the model grid point closest to the platform.
The peak hindcast HS was within 1 m of the peak measured HS at the other deep
water sites as well. At the shallow water site, LATEX station 16, the most
recent analysis of the measured data yields a peak HS of 8.9 m in 20 m water
depth, compared to the hindcast peak of 8.7 m. This excellent agreement,
however, must be conditioned on the continuing investigation of the validity
of the measurements at this site after the instrument mount overturned just
before peak conditions were experienced.

The maximum hindcast HS in deep water of 13.5 m ranks Hurricane Andrew
very highly in terms of wave generation. If we use the ODGP suite of
historical hindcasts as a reference (Ward et al., 1979) the maximum deep water
hindcast HS in Andrew at the shelf break south of the Mississippi Delta of
13.5 m (44.3 ft) was exceeded in only 6 storms this century anywhere in the
Gulf. This ranking is consistent with the basic meteorological
characteristics of Andrew in the Gulf. Only four hurricanes this century
attained central pressure of lower than 936 mb in the Gulf. In the absence of
any compelling evidence to the contrary we estimate that the hindcast of peak
HS and associated TP has achieved an accuracy consistent with a scatter index
of about 10%.

The hydrodynamic modeling of Andrew was most successful at simulating the
spatial distribution and magnitude of the primary forced ocean response at
intermediate water depths. Runs completed to date appear to slightly
underpredict peak currents in very deep water and to slightly overpredict peak
current speeds in very shallow water. These "asymptotic" response regimes are
often modeled fairly accurately with simpler mixed-layer (deep water) and
barotropic vertically integrated formulations (shallow water), but such models
can not provide a complete three-dimensional picture of the ocean current
response on the whole of the continental shelf. It is expected that with some
further refinement and tuning of the vertical mixing parameterization of the
model and inclusion of wave enhanced bottom stresses, better absolute
agreement between the modeled and measured peak currents may be achieved.
Additional improvement in the overall time history of agreement would appear
to benefit from a more complete specification of the initial current and
density distributions throughout the model domain than was prossible in this

study.
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Table 2.1

Platform Location and Meteorological Sensor Characteristics

Station Latitude Longitude Barometer Anemometer
Elevation Elevation Duration
(degN) (deg W)  (m) (m) (min)
42001 2554  89.42 0.0 10.0 8
42003 25.90. 85.90 0.0 10.0 8
Shell Bullwinkle 2790  90.90 20.1 93.6 2/10
Exxon Lena 28,67  89.17 34.8 60.1 2/10
Grand Isle 2927  89.96 9.1 15.8 2/10
Southwest Pass 2890 8943 332 338 2/10
LATEX Mooring 17 2920  91.96 0.0 3.6 ??
LATEX Mooring 19 2847  92.03 0.0 3.6 7?
Ship Shoal 198G 28.6 91.3 NA NA 1
East Cameron 83H 293 93.0 NA NA 1
East Cameron 42B 2935 92.8 NA NA 1
South Marsh Is. 136 283 92.1 NA NA 1
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Table 2.2

Minimum Observed Barometric Pressure and Maximum Wind Velocity

Station Latitude Longitude  Barometer Wind Velocity
Pressure Speed Direction

(deg N) (deg W) (mbs) (kt) (deg)
42001 25.54 89.42 - 12.3 235.0
42003 25.90 85.90 997.4 23.4 310.0
Shell Builwinkle 27.90 90.90 998.5 26.6 277.0
Exxon Lena 28.67 89.17 1007.7 - -
Grand Isle 2927 89.96 1005.2 247 80.0
Southwest Pass 28.90 89.43 1006.1 25.1 67.0
LATEX Mooring 17 29.20 91.96 993.3 - -
LATEX Mooring 19  28.47 92.03 1004.2 15.4 328.2
Ship Shoal 198G 286 913 ; 40.0 .
East Cameron 83H 29.3 93.0 - 23.6 -
East Cameron 42B 29.5 92.8 - 19.5 -
South Marsh Is. 136  28.3  92.1 - 19.5 -
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MMS Block

Bay Marchand 20A

Eugene Island 100

West Cameron 178

T

Corps of Engineers Pressure Gauges

Latitude

{deg min N) (deg min W)

28 58.80

29 04.03

29 34.00

Table 2.3.

Longitude

S0 10.50

91 26.70

93 16.00

49

Depth
(m)

11.5

11.3

12.2

Data Status

Large data gaps, not

used

Few data gaps,

Too far west of
hurricane

OK



Mooring

12

13

14

15

16

17

18

19

Water

Depth
(m)

505

200

47

20

19

22

51

Table 2.4

LATEX Measured Current Velocity Moorings

during Hurricane Andrew (1992)

Meter Start
Depth Date
(m)
12 6/2
100 6/8
12 7123
100 7/23
190 7123
11 6/2
26 6/2
37 -
10 6/2
17 672
111 -
17 6/1

32 -

5% -
10 6/1
19 6/1

3 724
20 7 -

47 6/2

1. Mooring and meter lost during Andrew
2. Meter impeller lost during Andrew
3. Minispec not installed during Andrew

50

Stop
Date

5/10
9/11
10/22
10722
1022
971
572

8726
972

8725

92
8/31

10720

8/30

Latitude

(deg min N)

27 55432

28 03.452

28 23.674

28 36.498

28 52.024

29 11.762

28 57.764

28 27.910

Longitude

(deg min W)
90 29.676

90 29.153

90 29.572

90 29.459

90 29.451

91 57.893

91 58.963

92 02.088



Table 2.5

.
Comparison of O, and Inertial Periods in Northern Gulf of Mexico
Latitude 0l Period Inertial Period Difference Synodic Pericd
{deg-N) {deg/hr) (deg/hr) (deg/hr) (days)
30 25.81%94 25.9173 .0979 153.2
29 " 26.1754 .35860 42.1
28 " 26.4237 .6043 24.8
Pt
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i

Maximum Values of Total, Tidal and Non-Tidal Current Velocity

Location

lz2T
12T
12T

12M
12M
i2M

13T
13T
i3T

13M
13M
13M

138
13B
13B

147
14T
14T

14B
14B
14B

15T
15T
1sT

158
158
15B

1eB
168
is68

187
18T
18T

18B
188
18B

19T

19T
19T

19B
198
198

Total:
Tidal:
Non-Tidal:

fotal:
Tidal:
Non~Tidal:

Total:
Tidal:
Non-Tidal:

Total:
Tidal:
Non-Tidal:

Total:
Tidal:
Non-Tidal:

Total:
Tidal:
Non-Tidal:

Total:
Tidal:
Non=-Tidal:

Total:
Ticdal:
Non-Tidal:

Total:
Tidal:
Non-Tidal:

Total:
Tidal:
Non-Tidal:

Total:
Tidal:
Non-Tidal:

Total:
Tidal:
Non-Tidal:

Total:
Tidal:
Non—-Tidal:

Total:
Tidal:
Non-Tidal:

Table 2.9

Day & Time

239.0000
240.5208
239.0000

241.2917
238.6250
241.2917

238.9375
239.9792
238.9375

240.1042
242.2292
239.9375

240.0000
243.8542
240.0000

239.0000
238.0625
239.0000

239.0694
242.1736
2359.06%4

238.8750
237.0625
238.8750

238.9583
242.4167
238.9583

238.8958
236.687%
238.8958

23%9.7083
238.1458
239.7083

239.3542
241.7083
239.3542

239.1625
237.8708
239.1625

240.3958

239.375%0
240.7917
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Maximum
Vel. Dirx.
138.¢6 204.0

7.9 30.9
137.4 204.5
69.7 276.9
1.5 207.86
69.9 274.1
163.5% 198.0
5.9 216.4
154.86 196.5
111.2 274.9
4.4 268.6
99.3 213.7
126.9 18z2.0
4.4 199.8
125.7 180.1
133.9 241.0
l4a.6 267.6
128.0 242.3
139.2 266.9
3.6 275.1
136.7 267.0
116.0 243.0
12.8 2783.8
122.2 247.6
114.4 253.0
6.0 129.8
114.1 252.7
96.0 254.0
1.8 15.8
93.9 2582.6
87.7 111.0
14.7 338.6
_76.5 111.6
6l.4 36.0
6.5 342.0
64.6 31.8
54.0 202.0
9.2 182.3
58.7 188.8
32.8 189.0
5.4 182.7
32.3 209.6



Table 3.1

Table . Storm parameters and track used for numerical model simulation of boundary wind field.

Snap | YYMMDDHH Lat Long | Speed Direc | Eyepres | Radius - B Pfar Sgw Anl
1 92082409 | 25.50 | -80.22 18 275 932 7 1.30 1017 8 30
92082412 | 25.60 | -81.20
2 92082415 25.65 | -82.20 18 275 951 8 1.25 1017 8 100
52082418 25.78 | -83.12
92082421 26.00 | -84.12
3 92082500 | 26.17 | -85.07 16 285 943 8 1.25 1017 6 115
92082503 26.37 | -85.90
92082506 26.63 -86.80
4 92082509 26.93 | -87.68 14 2905 949 14 1.25 1017 6 123
92082512 | 27.22 | -88.28
5 92082515 27.47 | -89.05 14 295 944 14 1.25 1017 6 128
92082518 27.77 | -89.73
92082519 27.90 | -89.92
6 92082520 28.05 -90.03 10 320 936 14 1.25 1017 5 133
92082521 28.17 | -90.15
92082522 | 28.32 | -90.33
92082523 28.47 -90.52
7 92082600 | 28.57 | -90.67 10 325 941 16 1.20 1017 5 135
92082601 28.67 | -90.82
3 92082602 | 28.73 | -90.97 8 335 949 16 1.15 1017 5 137
92082603 28.85 | -91.05
92082604 | 28.88 | -91.17
92082605 29.05 | -91.22
92082606 29.17 -91.23
92082607 29.28 91.42
9 92082608 29.48 | -91.43 9 345 957 16 1.15 1017 5 145
92082609 290.63 -01.52
92082610 29.77 | -91.57
92082611 29.88 | -91.63
10 92082612 30.05 -91.65 9 335 973 25 1.10 1017 5 150
92082615 30.47 | -91.67
11 92082618 30.90 | -91.60 8 020 991 25 1.10 1017 5 160
92082621 31.20 | 91.33
12 92082700 31.50 § -91.10 7 035 995 25 1.10 1017 5 175
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Table 4.1 w"Pields! variables. archived.
Fields
1 Wind Direction (deg from which)
2 Wind speed (m/s)
3 Total variznce of total spectrum (i.e. 0th spectral
moment)
4 Peak spectral period of total spectrum (sec)
5 Vector mean direction of total spectrum (deg to which)
6 Total variance of primary partition (i.e. sea)
7 Peak spectral period of primary partition (sec)
8 Vector mean direction of primary partition (deg to
which)
S Total variance of secondary partition (i.e. swell)
10 Peak spectral periecd of secondary partition (sec)
i1 Vector mean direction of secondary partition (deg to
which)
- 12 First spectral moment of total spectrum —
13 Second spectral moment
as computed by Haring & Hiedeman
these moments use first & second powers of omega
14 Significant wave height (m)
15 Dominant direction (Haring and Heideman)
C16 Anqular spreading function, as defined by *
Gumbel, Greenwood & Durand
0.0 for egqual energy in all directions; 1.0 for spike
17 In-line variance ratio (Haring & Heideman)
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Figure 2.4 Measured water elevations from coastal C-MAN and NOS stations,

from Breaker et al.,

1994.
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Figure 2.5 Water level elevation at LATEX mooring 16.
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Figure 2.6 LATEX mooring 16 wave parameters.
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Figure 3.7 Minimum central pressure in Hurricane Andrew from aircraft
observations and NHC and time history used in this study.
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Oceanweather Tropical System Analysis Hurricane Andrew 1992

Surface Winds and Pressures Estimated from Q2082518 +/- 3hrs
Vortex and Minob Data Messages

‘ N
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%0 [ )
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‘Figure 3.9 Screen display of workstation program used to fit radial pressure

profile.
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Hurricane Frederick 1979

Comparsion of Measured vs. Hindcast Wave Heights

—
18]

Buoy 42003 o Measured
OWIl 3G Wave Model — Hindcast

—
®)] O Mo
LI |

&
T

w

Significant Wave Height (m)

! 1 { . i ! ! ; [ |

O | . H : i
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Y

Significant Wave Height ..)

. Cognac Station °  Measured
L OWI 3G Wave Maodel — Hindcast
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Figure 4.8 OWI3G wave model versus measured wave height in Frederick (1279).
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Data File: FRED1200 Data

160 *
i Hurricane Frederick
‘ Buoy 42003/GP 2449
140 I Measured Time: 79091200
Hindcast Time: 79091200
(e} ']20 L Model: 3G, Version 49X
@D Measured Sig. Ht. 8.90 m
o ' . )
P Hindcast Sig. Ht.  9.00m
£ 100}
= _ 'Y Key:
0 R4 -—- Measured
S 80+ ! /‘, \ - - Hindcast
) AT
© o
"5 60 : \
QO 1 \‘
40 t o
I
I
20 *
! . = -
D NN N R
O,l.‘.'lgL..l. PR R DV s e e
0 0.05 0.1 0.2 0.25 0.3
Frequency (Hz)
Figure 4.10 ggxggegzizcﬁo?i;_l;;a?sus measured wave spectrum at NDBC buoy 42003
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92082518

Significant Wave Height
with Vector Mean Direction

98

intervals) and mean wave direction (vectors) as the eye approached

Figure 4.15 OWI3G hindcast of significant wave height (contours at 1 meter
the shelf break,.
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Figure 5.1 Regional map of Gulf of Mexico, showing the different grids used
in the shallow water current simulations. The original wind and wave grid is
the large outlined box. 6rid A is the cutline from 98 W to 85 W. Grid B is
the small box. The path of Hurricane Andrew is indicated by the heavy dash . .
line. The light dash line is the 200-m isobath and the long-short dash line is
the 2000-m contour. The locations of the mooring arrays are indicated by the
squares. Along the eastern array, the moorings are 12, 13, 14 and 15, starting
offshore. Moorings 19 and 18 are located offshore and shoreward along the
western array. T
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Figure 5.7

Winds and observed surface currents near the LATEX moorings.
Diamonds indicate mecoring locations. The 100 m/sec wind scale
vector is plotted above the chart. The hurricane track is plotted
as the heavy solid line, the eye as the heavy cross, and the
radius to maximum winds as the heavy circle. Plots at 6-hourly
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Figure 5.8 Time series of observed and hindcast current speed at the LATEX
moorings. The "t" signifies the top current meter, "m" the middle
current meter, andé "b" the bottom current meter. The vertical
dashed lines indicate the hindcast interval. Plots at indicated
meters are given in (a) through (m).
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Modeled and observed surface currents near the LATEX moorings.
Cross,

" Diamonds indicate mooring locations.
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1.0 Introduction
1.1 Objective of the Data Collection Program

The hindcast analysis of Hurricane Andrew is dependent on the acquisition and
subsequent analysis of measured meteorological and oceanographic data. For each of the wind,
wave, tide or current velocity models used in this project, selected boundary and/or initial
conditions must be specified from measurements and updated periodically. Other measured
data are used to either validate the results of the model or to fine tune selected parameters
usually involved with the frictional stresses at the sea surface and along the bottom or in the
turbulent structure of the air/water. Note that most of the measured data must be analyzed to
isolate the parameters from Hurricane Andrew since they are often superimposed on the
preexisting conditions. Since the hurricane generated oceanographic and meteorological
parameters dominate the relatively weak ambient conditions, this may not be a major concern.
However, those conditions should be evaluated to insure that is the case.

Andrew was a major hurricane which caused considerable damage to 241 oil platforms
(62 toppled or leaning) at an estimated cost in excess of $200 million (Ocean Industry, 1992).
Several reports documenting Andrew’s meteorological and oceanographic conditions have been
published using data readily available from coastal measurement sites and/or transmitting buoys
or oi} platforms. These include studies by Breaker et al. (1994), Stone et al. (1994) and
DiMarco et al. (in progress) which have concentrated on the surface observations. The present
study concentrates primarily on the analysis of both the surface and subsurface parameters.
These parameters are used in the development of the extreme wind, wave, storm tide and
current velocity over the entire region affected by Andrew through the use of the hindcast
models. Selected data sets from the earlier studies have been incorporated herein when they
have provided useful results for the above objective. :

1.1 Background

Due to the considerable marine activity in the Gulf of Mexico, various government and
industry data collection programs were in progress during Andrew’s transit. The Minerals
Management Service’s LATEX Physical Oceanographic program was by far the most extensive
of these measurement programs and has provided considerable data which can be used in the
hindcast analysis of the wind, wave, storm tide and current velocity as well as for the initial
hydrographic conditions. Other data acquisition programs include the National Data Buoy
Center’s C-MAN measurements both on the coast and on oil platforms, the National Ocean
Service’s coastal tide gauge installations, the Army Corps of Engineers’ (WES/COE) coastal
wave measurement program on oil platforms, the National Hurricane Center’s and the Reserve
Air Force’s reconnaissance aircraft flights, the oil industry’s measurements on selected
platforms, especially Shell’s Bullwinkle structure. These measurement sites are shown in Figure
1.1.1 which also shows Andrew’s track.

The available data from each of these programs is briefly described in the following
sections as well as their potential use in either model initialization, and verification or
calibration.
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2.0 Hurricane Andrew Data Acquisition
2.1 Meteorological Parameters

The meteorological parameters of greatest importance are the hurricane’s track, forward
speed, barometric pressure distribution from the hurricane center to the periphery and the
ambient pressure system through which the hurricane is moving. The measured wind speed is
used to verify the accuracy of the wind model and is thus a tuning parameter as opposed to a
boundary condition. The following sections provide a variety of measurement platforms which
range from deep water buoys to near coastal oil platforms and light towers. Table 2.1.1
summarizes the locations, sensor elevations and averaging intervals at the measurement sites
described in the following sections.

2.1.1 Hurricane Reconnaissance Aircraft

Daily reconnaissance flights were made into and around Hurricane Andrew as it crossed
the Gulf of Mexico collecting pressure, temperature and upper level wind data as well as eye
shape and diameter observations by Air Force and NOAA personnel. These data have been
collated at the National Hurricane Center in Coral Gables and at the National Hurricane
Research Division of the Atlantic Meteorological and Oceanographic Laboratory of NOAA.
NOAA satellite data also provided daily observations of hurricane location, movement and size
which were supplemented by coastal radar stations. Since these measured parameters are
extremely important in the development of the wind field for the hindcast of both the wave and
current parameters and require considerable analysis and interpretation, these data were
processed in the wave hindcast analysis part of this combined study and are presented in that
part of the study. These data are used primarily for forcing the models as opposed to
verification, although the interim product, the wind field, can be compared to measured time
series wind fields presented in this section once they have been adjusted to common elevations
and durations.

2.1.2 NDBC Buoy, Oil Platforms and C-MAN

Wind velocity and barometric pressure data were observed at NDBC buoys, oil
production platforms, and C-MAN stations along the coast. Air/sea temperature was also
recorded at the buoys and C-MAN locations. The maximum values of wind speed and pressure
was reported for several oil platforms. The location of these measurement sites are given in
Figure 1.1.1 and Table 2.1.1. Some parameters are missing due to sensor failure and some
records are truncated due to system failure. A description of the NDBC buoys used in this
study is given in Gilhousen et. al. (1990). The data for Hurricane Andrew were obtained from
National Oceanographic Data Center in Washington, D.C.

The C-MAN data are also acquired by NDBC and the instrumentation systems are
described in detail in Coastal-Marine Automated Network (C-MAN) Users Guide (NDBC,
1992). C-MAN stations are generally located in relatively shallow water near the coast located
on aids-to-navigation structures or other existing platforms. Instrumented oil platforms are
usually privately installed and maintained on existing platforms in deeper water than the C-
MAN stations, but much shallower water than the NDBC buoys.

Met-ocean data was also acquired during Hurricane Andrew from two oil platforms
which were part of a joint oil industry and NDBC project called the Meteorological and



Table 2.1.1

Platform Location and Meteorological Sensor Characteristics

Station Latitude Longitude Barometer Anemometer
Elevation Elevation Duration
(degN) (deg W)  (m) (m) (min)
42001 2554 8942 0.0 10.0 8
42003 2590 85.90 0.0 100 8
Shell Bullwinkle 2790 90.90 20.1 93.6 2/10
Exxon Lena 28.67  89.17 348 60.1 2/10
Grand Isle 29.27  89.96 9.1 15.8 2/10
Southwest Pass 2890  89.43 332 33.8 2/10
LLATEX Mooring 17 2920  91.96 0.0 3.6 ??
LATEX Mooring 19 2847  92.03 0.0 36 M
Ship Shoal 198G 28.6 91.3 NA NA 1
East Cameron 83H 293 93.0 NA NA 1
East Cameron 42B 295 92.8 NA NA 1
South Marsh Is. 136 28.3 92.1 NA NA 1



Oceanographic Measurement System (MOMS). Shell’s Bullwinkle platform (40 nm southwest)
and Exxon’s Lena platform (60 nm northeast) were the two closest MOMS structures to Andrew
(see Figure 1.1.1). Only barometric pressure was reported at the Lena platform.

Meteorological data was also reported for Chevron’s Garden Bank 236A platform, considerably
west (125 nm) of the hurricane track. The measurements are useful for peripheral values of
wind barometric pressure and wind speed which are used in the formulation of the model
hurricane wind field. These data were reported as part of the C-MAN program in near real
time during the hurricane. All platforms were just beyond the edge of the continental shelf.
Meteorological data were also at the Grand Isle C-MAN station as reported by Breaker et. al.
(1994, in progress). Locations are given in Table 2.1.1.

2.1.3 MMS/LATEX

There were three LATEX meteorological buoy mooring sites (17, 19 and 53) located in
the path of Hurricane Andrew as shown in Figure 1.1.1 and locations are reported in Table
2.1.1. However, the met buoy at mooring 53 and three others in the western Gulf were
removed to decrease the possibility of considerable mooring losses during the hurricane season.
The hurricane eye passed over mooring 53’s normal location. The hurricane passed very close
to the met buoy at LATEX mooring 17 where both wind velocity, barometric pressure and
temperature data were recorded. The anemometer on mooring 17, located 30 nm to the west of
the track, was lost prior to Andrew’s arrival; however wind speed and pressure was recorded.

At mooring 19, located 55 nm to the west of the track, both wind velocity and pressure were
recorded.

2.1.4 Other Measurements

Maximum 1-minute average and peak surface wind speeds were recorded at Ship Shoal
198G, East Cameron 83H and 42B and South Marsh Island 136B (Rappaport, 1992) and
pressure and wind speed at Grand Isle Coast Guard Station (Breaker, in progress). Time
histories of these data were not obtained. Locations are given in Table 2.1.1.

2.2 Hydrographic Data
2.2.1 MMS/LATEX

The water mass distribution is an important part of the initialization of the turbulent
energy closure mechanism for the proposed current velocity modelling effort, especially since
the shelf waters are well-stratified during the summer months. For that part of the Guif where
Andrew crossed the continental, there had been a LATEX hydrographic cruise several weeks
earlier. Both ADCP and CTD data had been acquired. Additional data will be searched for at
NODC for the area east of the crossing where the survey ended or else averaged summer
conditions will be used. The location of the hydrographic stations are shown in Figure 2.2.1.

2.3 Water Elevation

Storm water elevations over the continental shelf and along the coast are used to assist
in the verification/calibration of the numerical-hydrodynamic current and storm tide model as
well as in the computation of the hindcast wave parameters in shallow water. The NOS gauges
along the coast acquired these data; however, offshore measurements are more suitable to the
verification of the model as applied to the continental shelf.
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2.3.1 Corps of Engineers

Three U. S. Army Corps of Engineers’ wave pressure gauges were installed in water
depths from 11.3 to 12.2 meters. These gauges sites and data status are shown in Table 2.3.1.1.

Table 2.3.1.1

Corps of Engineers Pressure Gauges

MMS Block Latitude Longitude Depth  Data Status
(deg min N) (deg min W) (m)
Bay Marchand 20A 28 58.80 90 10.50 11.5 Large data gaps, not used
Eugene Island 100 29 04.03 91 26.70 11.3 Few data gaps, OK
West Cameron 178 29 34.00 93 16.00 12.2 Too far west of hurricane

Only the Eugene Island 100 data were processed in this project as the other gauges were
either too far away or too much data was missing.

2.3.2 NDBC Buoy and C-MAN

The NDBC C-MAN station Grand Isle also had water level data information which has
been reported in Breaker et. al. (1994, in progress). A complete list of the maximum measured
water elevations for Hurricane Andrew from the Florida coast to Grand Isle was also reported
in Table 5 of Beaker et. al. (1994, in progress) with maximum elevations reported for Florida,
Mississippi and Louisiana at coastal locations where NOAA tide gauges were installed. Many
negative storm water elevations were initially reported on the west coast of Florida as the
hurricane moved offshore.

233 MMS/LATEX

Water elevation data was available from the LATEX pressure gauge at mooring 16
which was located near the hurricane track. Although the pressure gauge tipped over during
the hurricane, it was possible to account for this depth change and to use the entire record.

The location of mooring 16 is shown in Figure 2.2.1 and also given in Table 3.2.1.1. Note that
other water level data was measured at LATEX sites (20, 23 and 1) further west; however, these
were too far away to provide useful information for the hurricane model calibration.

2.4 Wave Parameters
24.1 NDBC Buoy and C-MAN
The NDBC buoys in deep water provided the earliest measurement of Andrew’s wave
generating capabilities. These buoys (42001 and 42003) were earlier described in the
meteorological section. Regarding their potential for observing large waves, the buoys were
located on the weaker side of the hurricane (south of the hurricane track) and were not close to

the hurricane track, 25 nm and 100 nm for buoys 42003 and 42001, respectively.

Of the two C-MAN stations located on oil platforms, the Bullwinkle location was



Mooring
No.

12

13

14

15
16
17
18

19

Water

Depth
(m)

505

200

47

20

19

22

51

Table 32.1.1

LATEX Measured Current Velocity Moorings

during Hurricane Andrew (1992)

Meter Start
Depth Date
(m)
12 6/2
100 6/8
12 7723
100 7/23
190 7723
11 612
26 6/2
37 -
10 62
17 672 ;
11} -
17 6/1 -
3z -
5 . -
10 61
19 6/1
3 724"
20 -
47 : 672

1. Mooring and meter lost during Andrew
2. Meter impeller lost during Andrew
3. Minispec not installed during Andrew

Stop
Date

9/10
9/11
10722
10722
10722

.91
972

8/26
972

8125

972
8/31

10720

8/30

Latitude

(deg min N)

27 55432

28 03.452

28 23.674

28 36.498

28 52.024

29 11.762

28 57,764

28 27.910

Longitude
(deg min W)

90 29.676

90 29.153

90 29.572

90 29.459

90 28.451

91 57.893

91 58.963

92 02.088
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relatively close to the hurricane track (45 nm) and thus provided good wave measurements. It
was located on the weaker (southwest) side of the hurricane, so that the waves would be much
lower than those located the same distance to the northeast of the track. Wave data was not
located for the Lena platform about 55 nm to the northwest of the track at the closest point.

24.2 Corps of Engineers

Wave data were also recorded at the three instrumented platforms in where water level
data were reported in Table 2.3.1.1. However, the only nearly complete data set at Eugene
Island 100 was located a few miles in the lee of a relatively shallow shoal (3 to 4 m deep) to the
east through southeast, thereby limiting the wave heights by the breaking wave criteria (about
3/4 the storm water depth).

243 MMS/LATEX

Measured wave height data were obtained from LATEX mooring 16 which was about 20
nm northeast of the track at the closest point. A Coastal Leasing Inc. MimiSpec PUV type
gauge was installed at this location. The mean water depth of the pressure gauge was 17.63 m
before the pressure gauge housing turned over and 18.81 m thereafter. The pressure and
current velocity data was used to obtain the directional wave spectra until it was overturned by
Andrew. However, the pressure gauge continued to operate correctly thereafter and the non-
directional wave spectra could be obtain from these data. Mooring 17, about 25 miles west of
the hurricane track was not installed at this time.

2.5 Current Velocity Data
2.5.1 MMS/LATEX

The measured current velocity data represent the greatest source of information due to
the extensive installation of the LATEX program. Only one current meter was lost during
Andrew (at mooring 16) as the largest waves passed through this location and several other
nearby meters were damaged or tangled with debris at some point in the hurricane. A total of 7
moorings (16 meters) were selected from the available data set of 31 moorings as having
potentially useful current velocities for model calibration. These moorings are shown in Figure
2.2.1 and are also listed in Table 3.2.1.1. The dates were selected in order to obtain 90-day
records for tidal analysis. These LATEX moorings contained two meters.in shallow water and
three meters in water depths greater than 45 m. Vector averaging meters were used at the
surface and in shallow water where wave contamination would be a problem.

The LATEX current velocity data is the only data that could be found for the period
and location of Hurricane Andrew.

3.0 Data Analysis and Presentation

The measured data has been analyzed and presented using a 10-day window
encompassing Hurricane Andrew. This 10-day window is used throughout the data presentation
to provide the normal conditions before and after the hurricane passage. The degree of data
processing varied according to the type of data and the final use of the data in the numerical
models.



3.1 Meteorological Parameters

Barometric pressure data does not require any analysis and was presented as recorded
after any corrections for instrument calibration.

In order to make meaningful comparisons to the boundary layer wind model, the
measured wind data must be processed to determine the sustained velocity for a given interval
and at a given elevation. Peak velocities are also important, but they must be similarly
quantified to be of use. Duration and elevations of all time series wind data are given in Table
2.1.1. Winds are normally adjusted to either the 10 m or 19.5 m elevations using the one-
seventh power law and are adjusted to a sustained value of either 10 minute or one hour using
one of several distributions in the literature. The duration depends on how the model has been
formulated and/or calibrated. For the various data sources, we have combined the barometric
pressure, the wind speed and the wind direction on each figure using the same 10-day window.
All wind speeds are the sustained wind speed for the period of measurement.

3.1.1 Hurricane Reconnaissance Aircraft

As previously noted, these data are presented in the wave hindcast report since they are
used to drive the wind and hence wave and current velocity models and are not used for
verification purposes. The wind model uses specific hurricane eye and radially distributed
parameters which are developed from an analysis of the reconnaissance data.

3.1.2 NDBC Buoy and C-MAN

As Hurricane Andrew traversed the Gulf of Mexico from Florida to Louisiana, the
NDBC buoys first recorded its meteorological characteristics. Figures 3.1.2.1 and 3.1.2.2 give
the barometric pressure and wind speed and direction for NDBC buoys 42001 and 42003,
respectively, for a ten-day period encompassing the hurricane. Their geographical positions are
both south of Andrew’s track (Figure 1.1.1), about 25 nm and 105 nm from 42003 and 42001,
respectively, on the weaker side of the hurricane. The barometric pressure and wind velocity
exhibit the same patterns except the greater distance to 42001 resulted in much more weaker
magnitudes of pressure and wind speed.

Wind speed measurements from the Shell Bullwinkle platform (Figure 3.1.2.3) are
among the highest recorded offshore although the platform was some 40 nm away from the
hurricane track and on the weak side of the hurricane. The peak winds of 26.7 m/s at 93.6 m
would reduce to 19.4 m/s at 10 m, the standard reference level, using the one-seventh power
law. At the Chevron Garden Banks platform, both pressure and wind speed (Figure 3.1.2.4)
were considerably more benign since the platform was over 125 nm further away. As noted
earlier, these values represent peripheral conditions in which the hurricane was embedded. The
maximum reported values of pressure reduction and wind speed and direction are given in
Table 3.1.1.

The coastal C-MAN station at Southwest Pass was about the same distance (60 nm) and
proximity as the Lena platform from the hurricane track and had peak winds of 29 m/s (Figure
3.1.2.5) and approximately the same pressure (1006 mbs). The corrected 10-meter wind speed
would be 24.4 m/s. At the Grand Isle Coast Guard Station the pressure was about 1 mb lower
and the wind speed was also 24.7 m/s (Figure 3.1.2.6). The corrected wind speed would be 25.0

m/s.

10



Table 3.1.1

Minimum Observed Barometric Pressure and Maximum Wind Velocity

Station Latitude Longitude Barometer Wind Velocity
Pressure Speed Direction
(degN) (deg W)  (mbs) (kt) (deg)
42001 2554 8942 - 12.3 235.0
42003 2590 85.90 997.4 234 310.0
Shell Builwinkle 27.90  90.90 998.5 26.6 277.0
Exxon Lena 28.67 89.17 1007.7 - -
~ Grand Isle 2927  89.96 1005.2 24.7 80.0
Southwest Pass 2890  89.43 1006.1 25.1 67.0
LATEX Mooring 17 2920  91.96 993.3 - -
IATEX Mooring 19 2847  92.03 1004.2 154 328.2
Ship Shoal 198G 28.6 91.3 - 78.0 -
East Cameron 83H 293 93.0 - 46.0 -
East Cameron 42B 295 92.8 - 38.0 -
South Marsh Is. 136 283 92.1 - 38.0 -

11



Figure 3.1.2.1
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Figure 3.1.2.3
Barometric Pressure, Wind Speed and D
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Figure 3.1.2.5
Barometric Pressure, Wind Speed and Direction
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Figure 3.1.2.8
Barometric Pressure, Wind Speed and Direction
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3.1.3 MMS/LATEX | '

The LATEX mooring 17 meteorological was located about 32 nm west of the hurricane
track and recorded a minimum sea level pressure of 993 mbs (Figure 3.1.3.1), one of the lowest
time series measurements away from the coast. The met buoy lost its anemometer and no
speed records were obtained although direction was still being recorded. LATEX mooring 19
was approximately 55 nm west of the hurricane track. Since the anemometer elevation is so low
(3.6 m), the measured wind speed of 15.6 m/s (Figure 3.1.3.2) would increase to 18.0 m/s at the
standard reference level. This compares to 19.4 m/s measured at the Bullwinkle site which was
slightly closer to the hurricane track.

3.2 Hydrographic Data
321 MMS/LATEX

The potential temperature and salinity data were acquired in both synoptic and time
series measurements. The time series data are presented in Figures 3.2.1.1 to 3.2.1.6 for
LATEX moorings 12, 13, 14, 15, 18 and 19, respectively, for the top, middle and bottom current
meters {where data was available). The depths and locations of these meters is given Table
3.2.1.1. The effects of the hurricane was to mix the water column, thereby reducing the surface
potential temperature and increasing the salinity. At the bottom over the shelf, the mixing
process was reversed, although the change in these two parameters was considerably less. At
mooring 13, which was very close to the hurricane track, inertial oscillations were set-up at both
the middle (100 m} and bottom (190 m) meter depths. These oscillations started on JD 239, a
day after the hurricane passed through the site and lasted for 5 to 6 days. These oscillations
were not as developed in shallower water (47 m) at mooring 14 and lasted only 1 to 2 days.

The synoptic hydrographic data, acquired about a week before Andrew’s transit, are
given as vertical, cross-shelf profiles of potential temperature, salinity and sigma-t in Figures
3.2.1.7 to 3.2.1.9, respectively. These cross-shelf data show a warm surface layer of 30°C water
from 5 m to 15 m and salinity less than 33 ppt in the depths. There is a cross-shelf salinity
gradient due to the fresh water river outflow along the coast. The density gradient is the
strongest between 10 m and 20 m of depth. There was no post-Andrew hydrographic survey for
two months. These data were used to initiate the boundary conditions in the current velocity
model. The time series measurements were used to verify the temperature and salinity changes
at discrete locations and depths. :

3.3 Water Elevation Data

Measured storm water elevations contain both astronomical and hurricane generated
components to the total elevation. These must be separated in order to be used in the
evaluation of the proposed three-dimensional storm tide/current velocity model.

33.1 Corps of Engineers

The pressure gauge records from Eugene Island 100 were analyzed to determine the
mean water elevation every three hours. As Hurricane Andrew approached the measurement
site, the gauge began to malfunction intermittently, missing the more intense part of the
hurricane which passed through the area at about 0600 GMT on August 26th. There is a 12-
hour data gap from 0220 GMT to 1420 GMT, thus the observations missed the peak water

18



Figure 3:1.3:1
Barometric Pressure, Wind Speed and Direction
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Figure 3.1.3.2
Barometric Pressure, Wind Speed and Direction
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Figure 3.2.1.1
Mooring 12: Temperature & Salinity
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13: Temperature & Salinity

Figure 3.2.1.2
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Figure 3.2.1.2 {(cont)
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Figure 3.2.1.3
Mooring 14: Temperature & Salinity
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B. Mooring 14 Bottom
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Py A. Mooring

Figure 3.2.1.4

Mooring 15: Temperature & Salinity
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B. Mooring 15 Bottom
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Figure 3.2.1.5
Mooring 18: Temperature & Salinity
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Figure 3.2.1.6
Mooring 19: Temperature & Salinity
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elevation. The observed water elevation is shown in Figure 3.3.1.1. Due the gaps in the record,
the water elevations were not detided. Note that the initial drop in storm water elevation below
mean sea level is most likely due to the offshore winds before the hurricane approached the site
plus the relatively shallow water depths.

3.3.2 NDBC Buoy and C-MAN

There are obviously, no water elevations from the buoys. For the coastal C-MAN and
NOS stations, the water elevation records were analyzed by Breaker et. al., (1994, in progress)
and shown here as Figure 3.3.2.1. At Grand Isle the maximum storm surge was 1.11 m above
MLLW and the maximum water elevation was 1.16 m. These were their largest measured
values reported west of the Mississippi Delta.

3.3.3 MMS/LATEX

LATEX mooring 16 pressure gauge operated throughout the hurricane including the
period when the Minispec frame turned on its side. The change in the water depth was easily
determined by comparing the mean depth of the gauge before the hurricane with the mean
depth after the hurricane. The 10-day period of the corrected water elevation data is given in
Part A. of Figure 3.3.3.1. Using a much longer period of record (60 days), a harmonic analysis
was performed on the measured data to determine the tidal constituents. These constituents
were then used to determine the tidal heights relative to mean sea level for the 10-day period as
shown in Part B. of Figure 3.3.3.1. The tidal heights were then subtracted from the measured
water elevations to give the storm water elevation or storm tide which was 68.5 cm (Part C.).

3.4 Wave Parameters

Both significant and spectral (and directional spectral) wave parameters were computed
from these buoys, staffs and pressure gauges, depending on their configuration and condition.
Time series data were developed at intervals consistent with the recording intervals which
ranged from one-half to three hours. These data were used to verify both the deep and shallow
water parts of the hindcast wave model. As a result of the difficulty in measuring extreme
waves in shallow water from pressure gauges and reconstructing the water elevation, the records
tend to be gappy at times and/or require considerable work to reconstruct the true wave
elevations. Some of these problems occurred in the following sections.

3.4.1 NDBC Buoy and C-MAN

The measured wave heights and periods for the NDBC buoys are given in Figures 3.4.1.1
and 3.4.1.2 for buoys 42001 and 42003, respectively. Buoy 42001 was considerably south of the
hurricane track (125 nm) and the wave heights were dominated by the long period swell which
arrived before the hurricanes had generated the maximum local sea conditions, accounting for
the spike in Figure 3.4.1.1. The largest significant height was 4.4 m with a 10.9 sec spectral
period. The significant wave heights were computed from the wave spectra. Buoy 42003 was
considerably closer to the hurricane track (25 nm) and the maximum significant wave height was
6.2 m with a spectral period of 9.0 sec. The wave direction was from the east-northeast and
rapidly shifted to the northwest as the hurricane passed by.

At the Shell Bullwinkle platform the wave heights increased to 7.8(?) m and wave period
was 9.8 sec (Figure 3.4.1.3). Note that the double peaked wave height and period profiles are
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Figure 3.3.1.1
Measured Water Elevation at Eugene Island Blk 100
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Figure 3.4.1.1

Buoy 42001

Wave Parameters
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Figure 3.4.1.2
Buoy 42003 Wave Parameters
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Figure 3.4.1.3
Bullwinkle Wave Parcmeters
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due to the initial arrival of the swell followed by the local sea.
342 Corps of Engineers

Wave height and wave period observations at Eugene Istand 100 presented in Figure
3.4.2.1. As noted earlier in Section 3.3.1, the pressure gauge provided intermittent data during
the peak of Hurricane Andrew’s transit through the area which occurred around 0600 GMT on
JD 240. The peak wave heights may have passed through during the period from 0220 to 1420
when the data were not useable. Therefore, the maximum significant wave height of 3.0 m at
0220 may not be the highest that occurred. However, as noted earlier, the maximum wave
heights would be limited by the depth of the shoal water to the east and the short fetch length
to the northeast. A three to four meter wave would be the maximum height under these
conditions. The wind direction prior to the hurricane eye arriving at this location was from the
east-northeast, resulting in offshore winds and waves.

343 MMS/LATEX

LATEX mooring 16, located about 20 nm northeast of the hurricane track at the closest
point of approach and in 19 m of water was in the direct path of the largest waves in Hurricane
Andrew, located just beyond the radius of maximum wind speed (Rmax). Bretschneider
computed the radius to maximum waves at 1.2 Rmax. Subsequent to the measurement of the
waves in Hurricane Andrew, the MiniSpec was determined to have a number of unrelated
problems including electronic noise, signal clipping, warm-up transients, and the lack of
calibration for temperature effects. These problems were addressed by LATEX personnel
(Kelly et. al,, 1993} to reconstruct the wave measurements during Andrew as best possible. The
tide mode (averaged) data remains questionable. The pressure data during Andrew has been
corrected for these problems and verified by computing the wave heights using independent
means, using both the pressure spectrum and the velocity spectrum. The overturning problem
was discussed in Section 3.3.3 and did not present a problem to the wave analysis, except that
the wave heights could no longer be constructed using the velocity spectrum after that event,
just from the pressure spectrum.

The results of the wave data analysis are provided in Figure 3.4.3.1 for the 48-period
encompassing the maximum wave height at mooring 16. These results were produced by the
LATEX Data Management Office (DiMarco et. al.,, 1994, in progress) after the measured data
had been corrected for the above problems. The details of the analysis are contained in that
study. The surface directional wave spectra were developed using linear wave theory to convert
the pressure measurements to a surface wave spectrum. DiMarco (1994, personal
communication) qualified the results in Figure 3.4.3.1 accordingly, noting that the "energy seen
in the 5-7 second period band can be attributed to nonlinear wave-wave interaction of the
longer wave periods of 10-14 seconds” and that the "measurements should be regarded only as a
first approximation”. Additional work is required to determine the correct wave energy in the
high frequency end of the spectrum which is a non-trivial task.

The maximum significant wave occurred at 0100 GMT on August 26th and had a height
of 8.9 m and a peak period of 10.7 seconds. Several hours earlier, a peak period of 14.2 sec
was observed with lower wave heights. Due to the location of mooring 16 relative to the
hurricane track, these were the largest measured wave heights in Hurricane Andrew.
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16 Wave Parameters
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3.5 Current Velocity Data

The current meter measurements contain both wind-driven and tidal components in the
records. These components must be separated into tidal and non-tidal components so that the
non-tidal (wind plus inertial) can be quantitatively compared to the wind-driven current velocity
model results.

351 MMS/LATEX

Of the 31 current meter moorings installed during Hurricane Andrew, only one mooring
(#16) with one meter was lost even though Andrew passed directly over the eastern part of the
LATEX mooring arrays (see Figure 2.2.1). One mooring was dragged a few hundred feet and
two current meters either lost their impellers or were tangle with broken tag lines to the
platforms or other lines. The MiniSpec frame (mooring
16) turned on its side at the peak of the hurricane, invalidating the current direction.

The 7 moorings with the 16 current meters analyzed in this study are shown in Figure
2.2.1 and listed in Table 3.2.1.1. The reasons for the varied start and stop dates are the result of
the requirements for a long, continuous record (>90 days) for the harmonic analysis of the tidal
currents which is discussed next. Figure 3.5.1.1 shows the periods of available current meter
measurements for the period April 1992 to April 1993.

There are two indigenous problems in analyzing the tidal signal in the northern Gulf of
Mexico. First, the tidal currents are relatively weak compared to the mean, inertial and wind-
driven currents. Second, the O, component of the tidal current has a period (25.8194 hrs) which
is very close to the inertial period at the latitudes of the northern Gulf of Mexico. Table 3.5.1.1
shows how the period of the O, constituent compares to the inertial periods at selected latitudes
and also the synodic time require to be able to separate these constituents.

Table 3.5.1.1

Comparison of O, and Inertial Pericds in Northern Gulf of Mexico

Latitude O1 Period Inertial Period Difference Synodic Period
(deg-N) (deg/hr) (deg/hr) (deg/hr) (days)

30 25.8194 25.9173 0979 153.2

29 ! 26.1754 3560 42.1

28 " . 26.4237 .6043 24.8

Theoretically, with nearly all moorings being located south of 29 deg-N for record
lengths greater than 42 days, the inertial currents should not be a problem. However, it appears
. that the wind currents rotate at periods near the inertial period which overlap the O, 4z,
constituent’s period. Therefore a sufficiently long record is needed to minimize the influence of
the inertial current.

In order to evaluate the interference of the inertial currents on the tidal current analysis,
an 180-day record was analyzed using mooring 12 day in deep water at 28 deg-N. The record
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i,

was broken into two subsets of 90-day intervals and the latter subset broken into two subsets of
45-day intervals. Hurricane Andrew measurements were in the second 90-day subset and then
in the first of the 45-day subsets. The results are given in Table 3.5.1.2 for both the current
velocity amplitude (speed) and phase {degrees) for the east-west and north-south components
for the 5 largest constituents. The mean current over the record length and the fractional
residual variance are also given, the latter being a measure of the current velocity attributed to
non-tidal sources. A least-square, best-fit type of tidal analysis program was used to determine
the tidal amplitudes and phase angles from the measurements.

The results in Table 3.5.1.2 show that the tidal current velocity is relatively very weak.
Assuming that the 180-day record starting on 4-15-92 was sufficiently long that any inertial
current would not be significant, then the fractional residual variance attributed to the non-tidal
component is .99 and .98 for the E-W and N-S components, respectively (or .01 and .02 for the
tidal components, respectively). For the two 90-day records starting 4-15 and 7-22, the same
tidal current fractional residual variances have increased very slightly to .02 and .03 -.04,
respectively. The increase in amplitude of the O, component occurred mainly in the record
which included Hurricane Andrew. When this latter 90-day record starting on 7-22 was divided
into two 45-day records, the presence of the inertial currents in Andrew was observed in the
record containing Andrew, as it strongly increased the amplitudes of both the K, and O,
components and thereby increased the fractional residual variance to .10 for both the E-W and
N-S tidal current components. The 45-day record which did not contain Andrew was relatively
unchanged.

The conclusion from the above analysis was that a 180-record (or longer) would probably
be the best for the tidal analysis to minimize the influence of the inertial currents on the diurnal
tidal components. However, in practice, this is very hard to obtain due to mooring/instrument
malfunctions. A continuous 90-day record for the period encompassing Hurricane Andrew was
found to be available for all but two meters (14 middle and 19 middle) and this period was used
in the subsequent current velocity analysis to detide the measured current velocity record.

The results of the current velocity analysis at mooring 12 (surface meter) also show that
the mean current varied considerable depending on the period of observation. For example, the
180-day record shows a very weak mean current. When broken into the two 90-day
components, the mean current is shown to consist of a moderate current to the northeast for
the first 90-days followed by an equally strong current to the west-southwest for 90-days.

Finally, when this latter 90-day current was divided into two-45 day periods, the mean current in
both records was still west-southwest, but with considerably different velocities. Therefore, the
mean current is quit€ variable with time in response to external forcing. No seasonal patterns
were investigated.

The results of the measured current velocity analysis are given in Figures 3.5.1.1 to
3.5.1.8 for moorings 12-16 and 18-19, respectively for A. Current Speed and B. Current
Direction or the measured, the tidal and the non-tidal currents at the various depths of
measurement. These results are also summarized in Table 3.5.1.3 by mooring with the order
given by north to south orientation and in Table 3.5.1.4 by meter position on the mooring (top,
middle and bottom). The surface tidal currents in shallow water have increased speeds relative
to the deep water surface current meters as expected. Also, the moorings further to the west
(18 and 19) have stronger semi-diurnal components, especially in the north-south direction.
Finally, the maximum values of the total, the tidal and the non-tidal currents have been
summarized in Table 3.5.1.5.
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Maximum Values of Total, Tidal and Non-Tidal Current Velocity

Table 3.5.1.5

Location

127
la2T
12T

12M
12M
12M

13T
13T
13T

13M
13M
13M

13B
13B
13B

14T
147
147

14B
14B
14B

15T
15T
1sT

15B
15B
15B

16B
16B
i6B

18T
18T
18T

18B
18B
i8B

19T
197
19T

19B
198
198

Total:
Tidal:
Non-Tidal:

Total:
Tidal:
Non-Tidal:

Total:
Tidal:
Non-Tidal:

Total:
Tidal:
Non-Tidal:

Total:
Tidal:
Non-Tidal:

Total:
Tidal:
Non-Tidal:

Total:
Tidal:s
Non-Tidal:

Total:
Tidal:
Non-Tidal:

Total:
Tidal:
Non-Tidal:

Total:
Tidal:
Non-Tidal:

Total:
Tidal:
Non-Tidal:

Total:
Tidal:
Non-Tidal:

Total:
Tidal:
Non-Tidal:

Total:
Tidal:
Non-Tidal:

Day & Time

239.0000
240.5208
239.0000

241.2917
238.6250
241.2917

238.9375
239.9792
238.9375

240.1042
242.2292
239.9375

240.0000
243.8542
240.0000

239.0000
238.0625
239.0000

239.0694
242.1736
239.0694

238.8750
237.0625
238.8750

238.9583
242.4167
238,9583

238.8958
236.6875
238.8958

239.7083
238.1458
239.7083

239.3542
241,7083
239.3542

239.1625
237.8708
239.1625

240.3958

239.3750
2490.7917

53

Maximum
Vel. Dir.
138.6 204.0

7.9 30.9
137.4 204.5%
69.7 276.9
1.5 207.6
€9.9 274.1
163.5 198.0
5.9 216.4
154.6 196.58
111.2 274.9
4.4 268.6
99.3 213.7
126.9 182.0
4.4 199.8
125.7 180.1
133.9 241.0
14.6 267.6
128.0 242.3
139.2 266.9
3.6 275.1
136.7 267.0
116.0 243.0
12.8 278.8
122.2 247.6
114.4 253.0
6.0 12¢9.8
114.1 252.7
96.0 254.0
1.8 15.8
93.9 252.6
87.7 111.0
14.7 338.6
76.5 1il.6
€1.4 36.0
6.5 342.0
64.6 31.8
54.0 202.0
9.2 192.3
58.7 188.8
32.8 199.0
5.4 182.7
32.3 209.6



Figure 3.5.1.2.A
LATEX Mooring 12 Top Meter

A. Current Speed
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Figure 3.5.1.2.B

LATEX Mooring 12 Middle Meter

A. Current Speed
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Figure 3.5.1.3.A
LATEX Mooring 13 Top Meter

A. Current Speed
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Figure 3.5.1.3.B

LATEX Mooring 13 Middle Meter

A. Current Speed
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Figure 3.5.1.3.C
LATEX Mooring 13 Bottom Meier

A. Current Speed
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B. Current Direction
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Figure 3.5.1.4.A
LATEX Mooring 14 Top Meter

A. Current Speed
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Figure 3.5.1.4.B
LATEX Mooring 14 Bottom Meter

A. Current Speed
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Figure 3.5.1.5.A
LATEX Mooring 15 Top Meter

A. Current Speed
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Figure 3.5.1.5.B

15 Bottom Meter
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Figure 3.5.1.6.A

16 Bottom Meter
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Figure 3.5.1.7.A
LATEX Mooring 18 Top Meter

A. Current Speed
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Figure 3.5.1.7.B
LATEX Mooring 18 Bottom Meter
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Figure 3.5.1.8.A

LATEX Mooring

19 Top Meter
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Figure 3.5.1.8.B

LATEX Mooring 19 Middle Meter

A. Current Speed
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Appendix B.

Distribution of conventional synoptic surface observations at 3-
hourly intervals in the Gulf of Mexico during the passage of
hurricane Andrew. Reports of surface pressure and surface wind
speed and direction are plotted for NDBC buoys (e.g. 42001), C-
MAN stations (e.g. BUSL1l) and transient ships (e.g. KGKV). Wind
speeds are referred to equivalent neutral 20 m elevation. The two
digits near the wind barb denote, respectively, the "tens™ place
of wind direction (e.g. 9 for 90 degrees) and the units place of
wind speed in knots (e.g. 7 for 17 knots).
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Appendix C.

Screen display of workstation display of program used to fit
parameters of radial pressure profile at 2-hourly intervals from
reconnaissance measurements.
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Appendix D.

wWind distribution in Hurricane Andrew at 3-hourly intervals over
the full hindcast period and spatial domain modelled. Each half
(full) barb represents 5 (10) knots, each flag S0 knots, of the
effective neutral 20-m l1l-hour average wind speed. Winds are
plotted at every other row and coclumn of grid points of the grid

used for the wave and current hindcasts.
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Appendix E.

Wind distribution in Hurricane Andrew at 3-hourly intervals over
a part of the grid. Each half (full) barb represents 5 (10)
knots, each flag 50 knots, of the effective neutral 20-m i-hour
average wind speed. Winds are plotted at every other row and
column of grid points of the grid used for the wave and current
hindcasts. The two digits near the wind barb denote,
respectively, the "tens" place of wind direction (e.g. 9 for 90
degrees) and the units place of wind speed in knots (e.g. 7 for
17 knots).
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Appendix F.

Plots of hindcast significant wave height and vector mean wave
direction at 3-hourly intervals in Hurricane Andrew. Contours of
significant wave height are labelled in meters. The last plot
shows the envelope of maximum hindcast significant wave height
throughout the storm history.
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Appendix G.

Observed surface currents at hourly intervals during the passage
of Hurricane Andrew indicated as plotteed vectors (see scale at
top) at the measurrement sites. The track of the center of
Andrew is shown and the position of the center at the time of the
map is indicated by a cross. The circle surrounding the cross is

the approximate radius of maximum wind.
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